
MASSACHUSETTSLABORATC RY FOR INSTITUTE OF
COMPUTI SCIENCE TECHNOLOGY

.9 A23 j MIT/LCS/Ti &496

AlT IN-DEPTH ANALYSIS
OF CONCURRENT B-TREE

ALGORI -HMS

Paul Wa ig

February 1991

545 TECHNO OGY SQUARE, CAMBRiOGE, MASSACHUSETTS 021097'-

Unclassified
SECURITY CLASSFCATiON OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified ___________________________

2a. SECURITY CLASSIFICATION AUTHUR17Y 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution
2b_ DECLASSIFICATi N/DOWNGRADING SCHEDUE- is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR 496 N00014-89-J-1988

6a NAME OF PERFORMING ORGANIZATION 16b OFFiCE SYMBOL 7a NAME OF MONITORING ORGANIZATION

'-I Lab for Comuter Science J (if applicable) Office of Naval .Research/Dept. of Navy

6c ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cabioe A019 Arlington, VA 22217

a1. TITLE OFcld eUIy lSPOSOIfiaN) tC7=5~~C hIUEETISRMN DNI;A NNME

ELEEN NO.PLOMENTACCESSOTATION

CO1AT CODES (i8lud SBurECT TEMS(onaussieefeifncayantieniyoybn)knmbr

AnL GROUePt SUB-GROUP B-Cncret ree PAlgeo lgrthriDcioaieDaaass

Tectinersio memo O eury, Reliaton Cahecheeny

Software cache management

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

The B-tree is a dlata structure designed to efficiently support dictionary operations for

a variety of appiications. In order to increase throughput. many algortm aebe

proposed to maIintaini concurrent opecrations on B-trees. Replicating objects in memory

can play a large role in concurrent B-tree performance. especially for large distributed

ndarlKsystems. Because mos t -eplication schemes are cohserent. readcrz generally

canlnot operate concurrently with a writer.

[Car- :: iculJora(67)'5184

flfl r 0M DNA 173, 6o mAk 83 APR edior may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*US. Go3wrt Pn-g Offime tB0-IB-W4

Unclassified

19. This thesis presents two new concurrent B-tree algorithms. The first is an link al-

gorithm that uses coherent replication, it is based on the Lehman-Yao algorithm which
performs better than any other proposed concurrent B-tree algorithm. The second is a
similar algorithm that uses multi-version memory, a new semantics for replicated mem-
ory. Multi-version memory weakens the semantics of coherent replication by allowing
readers to read "old "prsions" of data. As a result, readers can perform in parallel with
a writer. Also. implomentations of multi-version memory require less communication
and synchronization. Simulation experiments comparing a variety of concurrent B-tree
algorithms show that the first algorithm has better performance than previously pro-
posed algorithms and that the second algorithm has significantly better performance and
scaling properties than any algorithm using coherent replicated memory.

AcceSion For

NTIS GRA&I

DTIC TAB

Unannounced
Justification_

By,
Distribution/

Availability Codes
AVaii and/ar

Viljt SPseeja.l

fist

........

An In-Depth Analysis

of Concurrent B-tree Algorithms
by

Paul Wang

January 1991

© Massachusetts Institute of Technology 1991

This research was supported in part by the National Science Foundation under Grant
2CR S716884. by the Defense Advanced Research Projects Agency (DARPA) under Con-
tract N00014-89-.1-198S. and by gn equipment grant from Digital Equipment Corporation.
The author was supported by a National Science Fouitdation Gra1du-te Fellowship.

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

An In-Depth Analysis of Concurrent B-tree Algorithms

by

Paul Wang

Abstract

The B-tree is a data structure designed to efficiently support dictionary operations for
a variety of applications. In order to increase throughput, many algorithms have been
proposed to maintain concurrent operations on B-trees. Replicating objects in memory
can play a large role in concurrent B-tree performance, especially for large distributed
and parallel systems. Because most, replication schemes are coherent, readers generally
cannot operate concurrently with a writer.

This thesis presents two new concurrent B-tree algorithms. The first is an link al-
gorithm that uses coherent replication; it is based on the Lehman-Yao algorithm which
performs better than any other proposed concurrent B-tree algorithm. The second is a
similar algorithm that uses multi-version memory, a new semantics for replicated mem-
ory. Multi-version memory weakens the semantics of coherent replication by allowing
readers to read "old versions" of data. As a result, readers can perform in parallel with
a writer. Also, implementations of multi-version memory require less communication
and synchronization. Simulation experiments comparing a variety of concurrent B-tree
algorithms show that the first algorithm has better performance than previously pro-
posed algorithms and that the second algorithm has significantly better performance and
scaling properties than any algorithm using coherent replicated memory.

Keywords: B-Trees, Parallel algorithms, Dictionaries, Databases, Multi-version men-
ory. Replication, Cache coherency, Software cache management

This report is a minor revision of a Master's thesis of the same title submitted to the De-
partment of Eluctrical Engineering and Computer Science on January 10, 1991, in partial
fulfillment of th.' rcquiuiii nL, £o iOe degree oi iaster (,f SccU.LL iii Electrical 'Lrgin,;er-
ing and Computer Science. The thesis was supervised by Professor William E. Weihl.

3

Acknowledgments

First. I thank Professor William Weihl. my thesis supervisor and academic advisor. His

insiglit,,. comments. and suggestions to this thesis were crucial and greatly appreciated.
I also thank Wilson Hsieh for his ruthless proof-reading and debugging skills. Qin

Huang and Brad Spiers waded through portions of my thesis and debugged some of my

code. Sanjav Ghernawat repaid an old debt with interest.

I cannot forget to include the members of the programming methodology group.

They have made my work environment exciting and unpredictable. 1 especially thank

Kathy Yelick. Earl Waldin, Steve Markowitz, Eric Brewer, and Chris Dellarocas. At

some time during the last two years, they were unlucky en. _h to share an office with

me. Also. Carl Waldspurger was always around to initiate serious discussions and not

so serious flamefests. Sanjay and Wilson installed addictive computer games on my

machine whenever I needed to concentrate. Adrian Colbrook racked up some unbelievable

Battlczonc scores. Bob Gruber's speculations about Twin Peaks seemed totally off-base.

but turned out to be true. Anthony Joseph ran large batch jobs that competed with my

simulations. I never got around to reading Qin's thesis (or Sanjay's, for the matter).

I would like to thank my roommates Kenneth r*'rndorf and Craig Thompson. Moving

next to a video rental store was a mistake. So was getting cable TV. Special ,ppreciation

goes to Steve Derezinski for helping me get the biggest hangover in my entire life. I also

thank Ronald Carino, Jennifer Harris, Jim Koonmen, Deborah Nungester, Arun Ram,

and Tim Shippert. among others. Sweet '54!

Finally. I would like to thank my family, especially my parents. Without their love

and support. I would never have been able to finish this thesis.

Contents

1 Introduction 11
1. 1Dictinaries 13
1.2 Pseudocode. 14
1.3 OvervieW 15

2 The Concurrent B-Tr'ee 17
2.1 B3-Tree Data Structures 1

.1. 1 B-Tree Nodes 8
21. 2 B-Tree Anchor. 20

2.2 Concurrent B-Tree Algorithms 21
2.2.1 Data Contentionl. 22
2.2.2 Resource Contention 24
2.2.3 Dictionary Operation Structures 26
2. 2.4 Issues. 28

2.3 Related W~ork. 33

3 The Coherent Shared Memory Algorithm 35
3.1 The B-Link Tree. 40

3.1.1 B-Link Tree Nodes 40
3.1.2 B-Link Tree Anchor. 42

3.2 Miscellaneous Functions. 42
3.3 The Lookup Operation 45
3.4 The Insert Operation. 46

3.4.1 Descent Phase. 47
3.4.2 Decisive Operation 48
3.4.3 Restructuring Phase. 49

3.5 The Delete Operationi. 57
3.5.1 Decisive Operation 57
3.5.2 Restructuring Phase. 60

3.6 Coordinating Background Processes 68
3.6.1 Example!7 -r the Problem. 68
3.6.2 Solution 70

8 CONTENTS

3.7 Parent Pointers....................................... 72
3.8 SummarN 73

4 The Multi-Version Memory Algorithm 77
4.1 Multi-Version Mlemorv Schemes. 80

4. 1.1 Specification 80
4.1.2 Implementations. 82
4. 1. 3 Multi-Version Memory and Existing Architectures 84

4.2 A General Transformationl... 86
4.2.1 Assumptions 86
4.2.'2 Transformation 90
4.2.3 Proof of Correctness. 91

4.3 The 'Multi-Version Memory Algorithm. 98
4.3.1 Valid Assumptions 98
4.3.2 The New Algorithm 100

4.4 Summary. 102

5 Performance Measurements 103
5.1 B-Tree Algorithms 104

.2The limplementation and the Simulator. 105
5.2.1 Replication end Data Contention 105
5.2.2 Other Issues 107

5.3 Simulation Rff ults 107
5.3.1 Operation Mixes. 108
5.3.2 Large Network Latency. 117
5.3.3 Replication Factor. 118

5.4 Summary. 121

6 Conclusions 123
6.1 Contributions 123
6.2 Future Work. 24

6.2.1 Multi-Version Memory 124
6.2.2 Concurrent B-Trees 125

List of Figures

1.1 Example pseudocode program. 15

2.1 B-tree node,, with integer keys 21
22CCG for various lock protocols 23

2.3 Leaf split example. 28
2.4I Sample Lehman-Yao B-link tree before insert?'ng 10. 30
2.5 Sample Lehman-Yao B-link tree in the middle of split 30
2.6 (1 ample Lehman-Yao B-Link tree after inserting 10.. 30

3.1 Example half-merge strategies. 37
,).2 Correct merge str,.:cgv 39
3.3 new..iwde(l) procedure. 41
3.4 new-dy-ree() procedure 43
3.5 ly-Jookztp('k) procedure. 44
3. 6 lookup- descen t(k) procedure 45
3.7 ly-insert(k. d) procedure. 46
I.S update-descent~k, stack) procedure 47
3.9 splitleafi leaf. k, d. stack) procedure. 48
3.10 divide-leafl leaf) procedurc 49
3.11 conmplete-split(s, p. stack, 1) procedure 50
3.12 find-parent(s, stack, 1) procedure. 51
3.13 start-,ode(,,, stack, 1) procedure 52
3.14 split-in terior(node, s, p, stack) procedure 53
3.15 divide-interi'or(node) procedure 53
3.16 makc-root~l) procedure 54
3.17 update-root(l) procedure. 56
3.i8 ly-delete(k) procedure. 57
3.19 me rgedeafl leaf stack) procedure. 58
3.20 join-leaves(left-deaf. right-deaf) procedure. 59
3.21 complte-merge-(s, p. stack, 1) procedure 60
3.-22 Problem with the stack 62
3.23 tumo-nodccnergc(node. s.p. stack) procedure. 64
3.24 Implementation choice for two-node-cmergc. 65
3.2.5 Changing separator values 66

9

10 LIST OF FIG URES

3.26 mergc-interior(lcft-node. right-node) procedure. 67
3.27 *Join-interior(leitnodc. rigbt-nodc) procedure 6S
3.28 Synchronizat ion example 69
3.29 start-'aiters(s. 1) procedure 71
3.30 Functions that divide and join wait lists.. 7 2
3.31 Parent pointers 74

4.1 fin hr procedure. 8S
4.2 Transformed find-x procedure 90
4.3 Transformed lookup-descent procedure 101

5Al 1Throughput vs. B-tree workers. IOV,7 !ookup 109
5.2 Throughput vs. B-tree workers. S53(' lookup,,. 10;(inscrts, and 5Ndde (110I(
5.3 Throughput vs. B-tree workers. 45;'(lookup,,. 30';(inserts. and 25%7(delt~ts. I 10
5.A Tlirougiiput vs. 13-tree workers. 5W, lookups. 50(/(inscrts, and V7,' dcht(. III
5.) Throughput vs. B-tree workers for miaximum fanout of 6.... 1 1I
5. Throu ghiput vs. B-tree workers for maximum faniout of 1-1.. I

5.7 iTroughiput vs. 1-trec worker.,. lIcrementingc localized keys 1I

, hoghiput vs. B-tree workers. Decremnenting localized keys 11
5.9 Throughpnut vs. B-tree W~orkers. Priority queue implementatioil.. 117
5.10 Throughput vs. B-tree workers. Slow network 118
3.11 Throughput \'s. replication factor. 20 B-tree workers 19
.5.12 Throughput vs. repibcation factor. 100 B-tree workers 120

Chapter 1

Introduction

I Ti. held of computer science. much like the field of mathematics, uses the notion of

sets as a fundamental tool. The complexity of many algorithms depends on the efficient

ininlenientation ofsets. A large ciass of applications. such as large-scale database systems

and symbol tables for compilers, require sets that only need to support the insert, lookup

and delctE operations. These sets are called dictionaries, ar.' the above operations are

called dictionary operations.

.Many data structures have been designed to support dictionary operations. These in-

clude hash tables (invented. according to Knuth [Knu73], by H. P. Luhn (1953)), balanced

binary trers [AVL62. Bay72. ST83], and B-trees [BM72]. B-trees are especially useful for

applications that use very large dictionaries that are stored in magnetic disks or other

direct-access secondary storage devices. The B-tree's structure allows it to minimize the

number of disk I/O operations needed to complete an individual dictionary operation.

A recent trend in large-scale computation systems has been a growth in processing

power. both within an individual processor, and with the number of processors within a

given machine. This growth has led to a greater concern for throughput of data struc-
tures. In recent years. many papers (e.g., [BS77, E1180. KL80, LY81, MR85, Sag86])

have proposed algorithms for maintaining efficient concurrent operations on B-trees. Un-

fortunately, as Johnson and Shasha [JS90] point out, very few studies have thoroughly

analyzed the performance of these algorithms. Even less clear are the algorithms' scaling

properties. In most analyses, data contention has been the main (arid sometimes only)

concern: such analyses ignore other important issues in large-scale parallel computation.

For example. as parallel and distributed systems become larger and more powerful,

their communication networks will become more complicated. Large network latency can

adversely affect performance. Most 13-tree analyses ignore network latency.

11

12 CHAPTER 1. INTRODUCTION

Another important and often ignored issue is resource contention. For example, every

dictionary operation accesses the B-tree's anchor and root. If the system components

that store these structures cannot manage the number of requests to ac, 3ss them. then

resource contention could become the limiting factor in performance.

Caching and other replication schemes can improve the performance of B-tree algo-
rithms. Caching allows local access to data. thus avoiding network latency. Caching

also reduces the dependence of performance on one reso- ce in the system., thus lowerinL

resource contention.

Most caching strategics require expensive communication and synchronization so that

reads and writes can appe r atomic. We refer -o such cache strateaies as colernt sharud

rnemory. In order to improve the ncaling properties of coherent shared memory, it be-

c(.mes necessary to limit the amount of communicatio, and synchronization.

One way to build sc-,]able replicated memory schemes is to loosen the semantics

of coherent shared memory. For example. by allowing processes reading data to be

assigned an old version of the data, it is possible both to reduce communication and to

synchronization needed to implement the replicated memory. and allow readers to access

data concurrently with a writer. This weaker semantics exp -ses the memory replication

to the user. and is not as generally useful as the semantics provided by coherent shared

memory. However. it turns out that such a scheme is not only adequate for some B-tree

algorithms, but it also greatly improves performance and scaling properties.

The goal of this thesis is to anal ze various concurrent B-tree algorithms with the

above issues in mind. Specifically, the contributions of this thesis are as follows:

\We present a new concurrent B-tree algoritill based on Lehman and Yao's algo

rithm fLY81] as modified by Sagiv [Sag86]. The Lehman-Yao algorithm is a link
algorithm, in which each node in the tree contains a pointer to its right neighbor.

Because these links allow processes to correct "mistales" caused by process over-

taking, the algorithm does not require lock coupling to ensure concurrency control.

The algorithm also uses a two-phase restructuring phase for insert operations, so

that background processes can perform most of the restructuring needed to balance

the tree. Sagiv showed that insert and lookup operations need only lock one node

at a time. Our algorithm extends the two-phase approach to the restructuring

phase for delt(operations. so that we can view both inscrts and deltcs svmmet-

ricallv. We bzse our two-phase delch ,'estructuring phase on ideas by Lanin and

Shasha [LS86]. but with modifications for correctness and efficiency.

1.1. DICTIONARIES 13

e We propose a new semantics for replicated memory, called multi-version mem-
ory IWW901. This semantics allows a reader to read old versions of replicated

data. While less generally useful than coherent shared memory, implementations of
multi-version memory produce more concurrency and provide better scaling proper-
ties than coherent shared memory. We show how a variety of concurrent dictionary

algorithms, including our proposed algorithm above, can use multi-version memory
to improve performance. We then present a multi-version memory algorithm based

on our algorithm above.

e We comnare our two algorithms with algorithms already proposed by others [MR85.
BS77'. II our experiments, we measure the performance of various concurrent

B-tree algorithms using random operation and key selections, as well as simula-
tions with localized key selections and fixed operation patterns. Using a message-
driven simulator for large-scale message-passing architectures, we model resource

contention, network latency. and replication, as well as data contention. We find
that the performance of the multi-version memory algorithm is significantly bet-
ter than the other algorithms. Our measurements also indicate that multi-version
memory is much more efficient and scalable than coherent shared memory, since it

requires less communication and synchronization.

In the next section. we formally define the dictionary abstraction. In Section 1.2,
we describe the psqudocod(used in the thesis to describe algorithms. In Section 1.3, we
present an overview of the entire thesis.

1.1 Dictionaries

A dictionary is a dynamic set (i.e., its elements may change over time) that supports
the operations insert, deletc, and lookup. Let Data denote the set of "data values" that
can be stored and maintained by the dictionary. Let Keys denote the fully ordered set
of values under which the above data values can be "keyed." A dictionary's elements
are tuples of the form < k. d >, where k E Keys and d E Data. No two elements of a

dictionary have the same key.

Ve define the specifications for the three dictionary operations as follows:

* lookup takes as arguments a dictionary D and a key value k. lookup returns the

data value d. if < k. d > D. Otherwise, it returns nil.

14 CHAPTER 1. INTRODUCTION

" insert takes as arguments a dictionary D, a key value k, and a data value d. insert

first checks if for all < k',d' >E D. k : k'. If that is true, then insert augments
the dictionary D with the element < kd >, otherwise it does nothing.

" delete takes as arguments a dictionary D and a key value k. delete removes any

element < I'- d > E D from D.

We refer to insert and deictc as updatf operations, since they might modify the state of

the dictionary.

In specifying the operations. we view each as an atomic action: the implementation
must guarantee that the apparent behavior is as if the operations execute atomically in ai
order consistent with their real-time order. This property is called linearizability [HW901.

1.2 Pseudocode

In this thesis. we describe algorithms using a pseudocode whose syntax is like C, Algol,
or Pascal. The conventions for the pseudocode, based on the conventions for pseudocode

used by Cormen. et a]. [CLR90]. are the following:

* The loop constructs while and for, and the conditional constructs if., then. and

else have the same interpretation as in Pascal.

e fork < op > forks a new process, which independently performs < op > in parallel

with other processes.

* Assignments are of the form a ;= b. where a is assigned the value of b.

* Array elements are accessed by specifying the array name followed by the index in

square brackets. For example, A[i] denotes the i'th element of the array A. We

denote the largest and smallest indices of an array A by A.high and A.low. Unless

specified otherwise, we assume the low bound of array indices is

e Compound data will be organized into records, which are comprised of fields. We
access a particular field by specifying the record name, followed by a ".", followed

by the field name. For example rec.foo refers to the foo field of record rec. We can

concatenate accesses to record fields and array elements; unless otherwise specified,

these accesses should be parsed from left to right.

1.3. OVERVIEW 15

proc insertion_-sort(A)
% A is an array of integers

for j = A.low + 1 to A.high do
2 key := AU'

/ tnsert A/l into the sorted sequence from A[A.Iou] to A) - 1]
3
4 while i > A.low - I &&: A[i] > key do
5 A(i 1j: A[id
C' j:= i- 1

7 end
S A[- + 1] key
9 end

1(end inserlomnsort

Figure 1.1: Example pseudocode program.

* A\ variable representing a record or array is treated as a pointer to data representing

the record or array.

" Variables are local to the given procedure. We will not use global variables without

explicit indication, and we will denote them by names with all capital letters.

* Sometimes variables will refer to notfiing (e.g., unassigned variables, uninitialized

pointers). In this case. we give them the special value of nil.

" Parameters are passed to a procedure by value (i.e. the called procedure receives

its own copy of the parameters). When arrays and records are passed., pointers to
the data are passed.

" Thp qymbol "%" indicates that the remainder of the line is a comment.

Figure 1.1 is an example program, a simple insertion sort, written in our pseudocode.

1.3 Overview

We organize the thesis as follows.

Chapter 2 presents the B-tree data structure and gives a general overview of the
algorithms developed for maintaining concurrent operations on B-trees.

Chapter 3 presents a new concurrent B-tree algorithm based on the Lehman-Yao

concurrent B-tree algorithm ILY81] as modified by Sagiv [Sag86]. This algorithm presents

16 CHAPTER 1. INTRODUCTION

a new implementation of the delete operation similar to that of Lanin and Shasha's [LS861,

but with modifications for correctness and efficiency.

Chapter 4 introduces multi-version memory and shows how the algorithm presented

in Chapter 3 can incorporate this novel replication abstraction to produce a more efficient

algorithm.,

Chapter 5 describes simulation experiments designed to compare the two new al-

gorithms with existing concurrent B-tree algorithms. It discusses how the simulations

address issues in analyzing large-scale parallel applications such as data and resource

contention, replication, and network latency. It then presents the results of the experi-

menu.

Chapter 6 presents a summary and conclusions. It also describes some directions for

future work.

Chapter 2

The Concurrent B-Tree

The B-tree. originally proposed by Bayer and McCreight [BM72], is a data structure

designed to support dictionary operations. A variant of 2-3 trees (invented in 1970 by

J. E. Hopcroft). the B-tree is well suited for applications where the dynamic set man-

aged by the dictionary is extremely large- such applications must keep the dictionary in

secondary storage devices such as magnetic disks. Because ac-esses to secondary storage

are much slower than accesses to real memory, an important ' tor for performance is the

number of 1/0 operations. Unlike a 2-3 tree, where each non-leaf nodes may only have

two or three children, a B-tree node's "maximum fanout" (maximum number of children)

can be large. This minimizes the height of the B-tree. In applications that store dictio-

naries on magnetic disks, it is common for each node in the tree to occupy one page of
virtual memory. Therefore, reducing the height of the tree also reduces the number of

I/O operations needed to perform dictionary operations. Comer [Com79] presents a full
review of B-trees.

Bayer and McCreight (BM72] designed the original B-tree algorithms for sequential

applications, where only one process accesses and manipulates the B-tree. The primary

concern of such algorithms is minimizing latency. However, in recent years, with the

growth of processing power and parallel computing, maximizing throughput has become

an important concern.

With the B-tree, it is possible to improve throughput by allowing independent pro-

cesses to perform concurrent operations. Many proposed algorithms do just that ([BS77,

E1180, KL80, LY81, MR85, Sag86], among others). This chapter presents an overview of

these algorithms.

Section 2.1 presents the data structures and abstractions that make up the concurrent

B-tree. Section 2.2 describes the existing concurrent B-tree algorithms and discusses the

17

18 CHAPTER 2. THE CONCURRENT B-TREE

main characteristics that distinguish the algorithms. Section 2.3 discusses other work
related to concurrent dictionaries, including data structures other than the B-tree that
efficiently support parallel operations.

2.1 B-Tree Data Structures

A B-tree consists of a set of nodes. Nodes may either be leaves, which store the actual
dictionary elements and have no children. or non-leaves, which have children and don't
store any dictionary elements. Such an arrangement, where only leaves store data. does
not correspond to the original design of the B-tree, but a variant commonly referred to
as the B+-tree [Com791. Wedekind [Wed74] pointed out that such a variant is more
appropriate for database applications than the original B-tree. This thesis only examine
algorithms that maintain B+-trees. and will use the term "B-tree" to mean "B-4--tree."

The B-tree anchor is a special data structure that contains a pointer to the root of the
tree. It might also contain other information, such as the height of the tree, or pointers

to other nodes in the tree.

2.1.1 B-Tree Nodes

We define the abstract state of the two types of B-tree nodes as follows:

" A non-leaf node n with j children consists of asequence (so,pl,s 1 ,p 2,s 2 .. . Pj,sj),
where each p is a downlink, and each si is a separator. A downlink is a pointer
to a child of n, and a separator is a value in the domain Keys used to guide
dictionary operations around the tree. The separator values are in ascending order
(i.e., V(1 < i' < J), si- I < si).

" A leaf node n that stores j elements consists of the following:

- A sequence (kj,dj,k 2, d2 ,. . ., kj , dj), where each tuple < ki, di > represents
an element stored in the leaf. The key values are in ascending order (i.e.,
V(2 < I < J), k,_l < k,).

- Two key values kin,, and kay. For all dictionary elements < k. d > stored in

the leaf, kmin < k < kmar.

We sometimes compare individual elements in the above sequences "directionally."
For example, if an element a occurs before clement b in a sequence (e.g., so occurs before

2.1. B-TREE DATA STRUCTURES 19

si in the sequence of a non-leaf node), then we sometimes state that "a is to the left of
b." Symmetrically, if a occurs after b, then we sometimes state "a is to the right of b."

Some algorithms require the abstract state of nodes to contain more information, such
as links to neighbors. We present and define such additions with the presentations of the
individual algorithms.

Downlinks connect nodes in a B-tree. If a non-leaf node n stores a downlink in
its sequence to node rn. we say "n is the parent, of rn." We cannot arbitrarily assign
downlinks. There are a set of restrictions that make the B-tree data structure "legal."
Before defining these restrictions, we must first define the following procedures:

" lcflsep takes as an argument node n. If n is a non-leaf. it. returns the leftmost
(smalest) separator value stored in n's sequence. If n is a leaf. it returns n's km in

value.

" righLse/p takes a node n. If n is a non-leaf. it returns the rightmost (largest)

separator value stored in n's sequence. If n is a leaf, it returns n's kmax value.

" coverset takes a node n, and returns the set of keys {k I leflsep(n) < k <
righLtsep(n)).

" height takes a node n, and returns the minimum path length from n to a leaf in
the tree. (If n is a leaf. height(n) = 0.)

We now present the restrictions on B-tree nodes that define legal states for sequential
B-tree algorithms:

e Every node in the tree has exactly one parent (i.e., exactly one other node must
have a downlink that points to the node), except the root node, which has no

parent.

& If a downlink in n points to the node rn, then in the sequence that makes up n's
abstract state, the separators to the immediate left and immediate right of the

downlink are equal to leflsep(m) and righLsep(m).

* All paths from the root to a leaf node have the same length.

9 The coversets of all nodes in any level in the tree form a partition of the keyspace.

20 CHAPTER 2. THE CONCURRENT B-TREE

9 There exists two constants I and u. I < u, such that all nodes, except the root,

must have at most u and at least I dictionary elements or downlinks (depending on
whether the node is a leaf or not). The root must contain at least 2 and at most u
downlinks. For most algorithms, 1 is either 1 or u/2.

Most. but not all. concurrent B-tree algorithms follow the first two restrictions. Some,
such as the Lehman-Yao algorithm [LY81], have much looser constraints.

We represent a B-tree node n in our pseudocode as a record with the following fields:

" n.sizf stores the number of dictionary elements or downlinks in n.

" n.levl contains height(n).

* If n is a non-leaf with j children, then n.p is an array of downlinks to n's children,
and n.s is an array of separators. For 0 < a < j. n.sja] = S, and for K b K

n.p[b] = pb. where .s, and p are separators and downlinks in the sequence of n's
abstract state. Note that the minimum index for the array n.s must be 0.

" If n is a leaf storing j dictionary elements, then n.k is ali array of key values and
n.d is an array of data values. For 1 < i < j, n.k[i] = ki and n.d[i] = di, where k
and di are keys and data values in the sequence in n's abstract state.

" If n is a leaf, then n.righLtsep stores right-sep(n). n does not store left-sep(n); its
left neighbor stores the value in its right-sep field. If v has no left neighbor. we

assume left-sep(n) is the minimum possible key value.

n may contain other fields as well, depending on the B-tree algorithm. For example,
some algorithms require n to have a field n.rightlink, which points to n's right neighbor.

Figure 2.1 illustrates the pseudocode representation of B-tree nodes. However, we
keep most figures in the thesis simple by drawing a non-leaf node by its abstract state (a
sequence of separators and downlinks); we draw a leaf as a sequence of key values, and
a right separator value. In order not to clutter figures, we ignore data values.

2.1.2 B-Tree Anchor

The B-tree anchor is a pointer to the root of the tree. We represent the anchor in our

pseudocode as a record a with at least two fields:

a a.root-pointer is a pointer to the root of the tree.

2.2. CONCURRENT B-TREE ALGORITHMS 21

non-leaf 1 3 1 71911812., . s
noden X /n.p

e m Size:5 m.level:0

leaf node m 1 1 13 114 1 i 1 n.k[,*[ll~lM n.d0

m.rightrsep: 18

Figure 2.1: B-tree nodes with integer keys.

9 a.root-level stores the height of the node that a.root-pointer is pointing to.

For some algorithms, the anchor need not point to the actual root of the tree, but

to a node "close" enough to the root to avoid performance degradation. The anchor

may store other relevant information as well. For example, some algorithms require the

anchor to store an array of pointers that point to the leftmost node of each level in the

B-tree.

2.2 Concurrent B-'Tfree Algorithms

The number of proposed concurrent B-tree algorithms prevents a separate discussion

about each algorithm. Instead, this section presents the common issues the algorithms

must address, as well the basic distinctions among the algorithms.

All the algorithms share the fundamental problem of contention. There are two

forms of contention. The first is data contention, which forces independent operations to

92 CHAPTER 2. THE CONCURRENT B-TREE

synchronize to prevent them from adversely interfering with each other. The second is
resourcf contention. Performance will degrade significantly if too many processes use a
bingle resource in the system (e.g.. a memory module in a shared-memory architecture,
or a processor in a message-passing machine). Sections 2.2.1 and 2.2.2 discuss the two
forms of contention and explain how all the concurrent B-tree algorithms deal with them.

The various algorithms also implement dictionary operations using the same general
structure [SGS81. For example, all operations begin with a descent from the root of the
tree to the proper leaf. They then perform a decisive operation (also referred to as a
decisive step), such as looking up a key in a leaf node., or adding or deleting a dictionary
element t, or from a leaf. All updath operations require a restructuring pha.(to ensure

that the tree remains balanced. Section 2.2.3 presents these similarities in detail.
The actual differences among the algorithms lie in the choices made in four orthogonal

issne For some of these issues, such as conservative vs. optimistic descent, the optimal

choice is clear. Others require more analysis. Section 2.2.4 presents and discusses each
of these issues.

2.2.1 Data Contention

Unless properly synchronized, independent processes accessing a B-tree may adversely
interfere with each other. For example, consider two processes, where one is reading
data from a B-tree node, and the other is updating the state of the same node. In the
middle of its update, the writer may put the abstract (or concrete) state of the node into
an improper state, which the reader may read. Preventing this requires synchronization
that may cause processes to block one another, thus causing data contention.

Concurrency Control

Algorithms must maintain concurrency control to prevent adverse interference like the
above example. A common approach is to associate a read/write lock with each node
in the tree. Independent operations may concurrently acquire the same lock in read
mode. However, a process can acquire a lock in write mode only if no other process has
acquired the lock in either read or write mode. Figure 2.2(a) shows the compatibility and
convertibility graph (CCG) [BS77] for read/write locks. A CCG is a directed graph whose
nodes are labeled with lock modes and whose edges represent the legal relations between
two modes of locks. A solid edge between two nodes denotes the compatibility of two
lock modes (i.e., it, is possible for two independent processes to concurrently acquire the

2.2. CONCURRENT B-TREE ALGORITHMS 23

(a) read/write locks

/
/

/
I

(b) read/intention/write iocib

Figure 2.2" CCG for various lock protocols.

lock with the modes specified by the nodes). A broken edge from one node to a second

indicates that it is legal for a lock of the first type to be directly converted to the second

type without releasing the lock. For read/write locks, only readlocks can be acquired

concurrently.

We assume a convention where operations to read and write data are distinct from

operations for synchronization. The association between the data and the lock that
"protects" the data is merely a program convention. To read data, one must first acquire

a readlock on the lock associated with the data, read the data, then release the lock.

The case of writing to data is analogous. We sometimes refer to acquiring the lock

corresponding to a data structure in read (or write) mode as "readlocking (or writelocking

the data structure."

Note that we can maintain concurrency control by having only one read/write lock

for the entire tree. ltowever, this severely limits the amount of concurrency within the

B-tree.

24 CHAPTER 2. THE CONCURRENT B-TREE

Earlier algorithms [BS77. E1180, KW82] proposed alternative multi-lock strategies,
which included various kinds of "intention to write" locks. Such locks could be held

concurrently with readlocks but not with writelocks., or other "intention to write" locks. '
Figure 2.2(b) shows the CCG of one such multi-lock scheme [BS771. These strategies
turned out to be less effective than more recent algorithms using ordinary read/write

locks [LSS87]. Thus. this thesis ignores such lock strategies.

Data Contention and the Root Bottleneck

Maintaining concurrency control causes data contention. Writers block incoming readers
and writers from accessing the same B-tree node; readers block incoming writers. Such
contention degrades performance. especially when it occurs in the higher nodes in the
tree. A process that updates the root or the anchor is especially painful, since every

B-tree operation must access both of them. We call this problem the root bottleneck.

The approaches used by concurrent B-tree algorithms to reduce data contention.
especially the root bottleneck, are the main differences among individual algorithms.

Algorithms try to minimize both the time needed to hold writelocks and the number of

writelocks a single process may concurrently hold.

2.2.2 Resource Contention

Even if there is no data contention, performance may still degrade as the number of
concurrent operations in the B-tree increases. This is due to resource contention.

Consider an example where the system stores only one copy of every B-tree node in
memory. concurrent processes only read data from the tree, and all proceSses try to read
the same node in the tree. In a shared-memory architecture, all the processes will try to
access the same data, which will be located in a single memory module in the machine. In

a message-passing architecture, the processor in which the B-tree node resides will receive

messages from every process requesting access to the node. In both cases, performance
will degrade if the single piece of hardware that maintains the copy of the node cannot

handle the number of requests.

Resource contention in a B-tree can be a serious problem, especially for the anchor
and the root. Every B-tree operation must visit both. If the system's memory only
stores one copy of each node, resource contention will likely be the limiting factor in

performance.

1Korth [Kor83] introduced similar lock modes, specifically for use in database management.

2.2. CONCURRENT B-TREE ALGORITHMS 2.5

Coherent Shared Memory

A solution to the resource contention problem is replication. Allowing multiple copies of

the same object spreads the work load among many components in the system. Repli-
cation can also improve locality. If a copy of an object is kept local to a process that

accesses the object. then the process can avoid network delays involved in accessing re-

mote data. One form of replication is hardware caching. In an application such as a
concurrent B-trec. caching and other forms of replication are likely to play important

roles in improving performance.

Replication schemes that maintain multiple copies of objects generally require cache

coh~ruwct protocols so that individual read and write operations appear atomic-" Coher-
ence ensures that the existence of replicated data objects in memory is transparent to the
user. We denote the class of memories that use such protocols as coherent shared memory

schcrn(.. Archibald and Baer [AB86j present an analysis of many proposed coherency
al gorit iin

Multi-Version Memory

Coherent shared memory allows for better performance by reducing resource contention

and improving locality. It also gives the user the appearance that read and write oper-
ations are atomic, despite multiple copies of the object. However. the synchronization

between readers and writers and the amount of communication between replicated copies

grow with both the number of readers and writers, and with the number of copies. By
weakening the semantics of coherent shared memory. we can improve the performance

of some concurrent B-tree algorithms while still ensuring correctness. We call this new
"'weakened" znernorv scheme multi-izersion memory.

A multi-version memory weakens the semantics of a coherent shared memory by al-
lowing a process to read an "old version" of data. (For example, if we use hardware

caches, the process might simply use the version in its cache, even if updates by indepen-
dent processes have not been recorded.) Therefore, individual read and write operations

no longer appear atomic. While this semantics is not as generally useful as a roherent

shared memory's semantics. many applications can use multi-version memory to improve

performance.

Surh einory schere" have used many subtly different correctness criteria, including sequentzal
consslency [Larn791 and hnearzzabzhzty [11W90]. This thesis will use linearizability as its definition of
correctness

26 CHAPTER 2. THE CONCURREN:T B-TREE

Multi-version memory achieves better performance than coherent shared memory

schemes because of the following important characteristics of its implementations (pre-

sented in Chapter 4):

" They allow processes reading data to run concurrently with a process writing to

the same data.

" They eliminate --cache rnisses" resulting from invalidation caused by writes by other

processes.

" Thev eliminate the need for processes to wait for messages that update or invalidate

replicated copie,.

The first characteristic reduces data contention, since in a multi-version memory,

writers do not block readers. The other two characteristics reduce the amount of syn-

chronization and communication needed to maintain the replicated copies, thus reducing

the effct> of resource contention. Chapter 4 presents multi-version memory in detail.

and explains how some concurrent B-tree algorithms can use it to significantly improve

performance.

2.2.3 Dictionary Operation Structures

The implementations for the three dictionary operations in all concurrent B-tree al-

gorithims follow a similar structure. This section presents the three basic phases that

concurrent B-tree operations use. Note that in the following discussion, we do not take

into account concurrency control: we intend for this section to provide a rough framework

common to all concurrent B-tree algorithms.

Descent Phase

B-tree operations start with the descent phasc. Given an operation with key k as an

arg..ment. the descent starts at the anchor of the B-tree and continues until the leaf

node 1. where k corrrsd(1). is reached. The steps of the descent phase are roughly the

following:

e Access the anchor to determine the root of the B-tree. The root will be the first

io(tl(visited.

2.2. CONCURRENT B-TREE ALGORITHMS 27

* At each non-leaf node n visited, find the node m in the level below n such that

k E covrrsct(m). For most algorithms, this requires finding the appropriate child of

n. using the separator values stored in n. This child will be the next node visited.

* When the visited node is 1, the descent phase completes.

Decisive Operation

B-tree operations perform a decisive operation after the descent phase. Lookups check

if anv dictionary elements stored in I contain key k: inserts insert a data element into

the leaf: dht,, delete data elements from the leaf. This thesis will sometimes refer to

decisive operations as decisive steps.

Restructuring Phase

Update operations (insert and delete) have one more phase. The restructuring phase

performs the necessary changes within the B-tree to ensure that the tree stays balanced.

We will describe the restructuring phase of the insert operation more closely. (The

corresponding phase of the delete operation is symmetric, with the concept of "node

splitting" replaced with "node merging.") Inserting a dictionary element into the B-tree

may cause a leaf to become "full," i.e., the number of elements stored in the leaf exceeds

its upper bound. When this happens. the leaf must be split in two, with the dictionary

elements stored in the original leaf divided up among the two leaves. Figure 2.3 shows

how a leaf that is full can be split. We assume that when a leaf is split, the right leaf is

a newly created leaf, and the left leaf is the original leaf with its state updated. When

such a split occurs, we insert a new downlink and a new separator value into the parent

of the original child. This may cause the number of the parent's children to exceed the

upper bound, thus forcing the parent to split, and so on. It is possible for this splitting

to propagate all the way up to the root of the tree, which causes a new root to be created

and the anchor's root pointer to be updated.

Some algorithms require the restructuring phase to be completed before the update
operation returns. Other algorithms augment the B-tree nodes with additional fields,

so that the update can return immediately after the decisive operation, and background

processes can complete the restructuring phase. Some algorithms "piggyback" the re-

structuring phase onto the descent phase. The next section will discuss each approach

in detail.

28 CHAPTER 2. THE CONCURRENT B- TREE

g 18 I, I ,, 181 12 1

(a) Y is full

130115 30 77

n rgbt-sep:lS right..sep:30 som eafnode

101115 F8 1 23o1

(b) Y is split and 10 is inserted

Figure 2.3: Leaf split example.

2.2.4 Issues

The differences between individual concurrent B-tree algorithms lie in the decisions they

make in four mostly orthogonal issues. The lock-coupling vs. link issuc concerns the

method that an algorithm uses to control the process overtaking problem. Bottom-up

vs. top-down updating determines the order in which the restructuring phase of update

operations changes the states of nodes. Conservative vs. optimistic descent determines

the mode in which the descent phase of update operations acquires its locks. Finally,

merge-at-half vs. merge-at-empty determines when nodes in the B-tree are merged or

deleted.

Lock-Coupling vs. Link

Associating read/write locks with B-tree nodes, and accessing the nodes only after acquir-

ing the appropriate lock with the proper mode does not completely solve the concurrency

control problem. There are situations, which we refer to as process overtaking, where up-

date operations can still adversely affect other concurrent operations.

2.2. CONCURRENT B-TREE ALGORITHMS 29

For example, recall Figure 2.3. Suppose process A, while performing a lookup(19)

operation, readlocks node X in Figure 2.3(a) during its descent phase. It concludes that

X's child Y is the next node to visit. It releases the readlock on node X. Before A

acquires a readlock on Y, process B, which inserts key 10, "overtakes" process A, and
completes its operation. Since Y will overflow if key 10 is inserted, B's restructuring
phase will split Y' (into Y and Z), as shown in Figure 2.3(b). When process A eventually
readlocks leaf Y, all pertinent information in Y has already been moved to Z, so A

accesses the wrong node.

To prevent process overtaking, most B-tree algorithms have their operations use lock

coupling to block independent operations "above them" from accessing nodes within

a sub-tree. During the descent, an operation traverses the tree by first obtaining the

appropriate lock on the appropriate child before releasing the lock on the parent. In
some cases. descents do not release the lock on the parent until much later. We discuss

this in our presentation of the bottom-up vs. top-down issue.

Lehman and Yao [LYS1] suggest another approach. They propose adding rightlinks

to all nodes. These links are pointers to a node's immediate right neighbor. They
effectively eliminate the need for lock-coupling. It is possiL for a descent to reach a
"wrong node." However, as long as the "wrong node" is to the left of the "correct node,"

the links provide a way for the operation to redirect itself. In the above example with

Figure 2.3(b), if process A readlocks Y and discovers that process B has already moved
the relevant contents of Y to Z. it will follow the rightlink from Y to Z.

As pointed out by Sagiv [Sag86], rightlinks allow insert and lookup operations to lock

only one node at a time. Lanin and Shasha [L S861 developed similar schemes for deletes

that lock only one or two nodes concurrently. (Unfortunately, their schemes introduced

some errors, which we explain and correct in Chapter 3.)

Rightlinks also allow much of the restructuring phase in update operations to be done

by background processes. During an insert operation, if a leaf is split, a downlink to the
new leaf must be added to the parent. However, with the presence of rightlinks, the insert
operation may return after the leaf is split, and a background process may complete the

downlink insertion for the parent node.

Consider the following example. In Figure 2.4., we see a sample tree before the inser-
tion of key 10. The insertion will cause the leaf node Y to be split. Figure 2.5 shows

the result of the insertion and split. Figure 2.6 shows the insertion into parent X of a

downlink pointing to Z (as well as the new separator between Y and Z). However, in a

tree with rightlinks, the transformation from Figure 2.4 to Figure 2.6 need not be atomic.

30 CHAPTER 2. THE CONCURRENT B-TREE

F igure 2.4: Sample Lehman-Yao B-link tree before inserting 10.

right_ sep:l 5 right.sep:30

some leaf nd 8 n

Figure 2.5: Sample Lehman-Yao B-link tree in the middle of split.

Fiur 156 30pl somnYa -in r e on-eaf n de

some l i l ia some lea nod som lea nod

2.2. CONCURRENT B-TREE ALGORITHMS 31

The tree in Figure 2.5 can adequately support dictionary operations. Any operation that

needs to access leaf Z can still do so by visiting Y and chasing its rightlink to Z. We

refer to the transformation from Figure 2.4 to Figure 2.5 as a half-split and the trans-

formation from Figure 2.5 to Figure 2.6 as a complete-split. A background process can

do the complete-split transformation, so the insert operation can complete right after

tthc- iawypiit. A delete operatioins restructuring phasu is similiar o that of inscrtic_,.

In Chapter 3. we discuss in more detail the background transformations for both update

operations.

Rightlinks eliminate the need for lock-coupling, thus reducing the number of locks

that need to be held concurrently. They also allow much of the restructuring phase to

be performed in the background. which increases concurrency and throughput. However,

traversing rightlinks may also increase latency.

Conservative vs. Optimistic Descent

In the descent phase of lookup operations, it is obvious that acquiring readlocks on nodes
visited is the correct procedure, since lookups do not affect the state of the B-tree. For

update operations. however, the choice of what type of lock to acquire is not as clear.

In a conservative descent strategy, an update operation writelocks every node it visits

during its descent phase, because the restructuring phase may later alter the state of the

node.

Bayer and Schkolnick [BS77] originally proposed the idea of optimistic descent strate-

gies. These protocols optimistically assume that only leaf nodes need to be restructured

during the restructuring phase. Therefore, an update operation's descent uses readlocks

instead of writelocks, except at the leaf level. If the update requires modifications above

the leaf level, the optimistic descent gives up, and the update retries with a conservative

descent.

In general, optimistic descent strategies perform much better than conservative strate-

gies, since they virtually eliminate the need for writelocks in the upper levels of the tree

(where contention is highest) [LSS87, JS90]. In most B-tree implementations, the prob-

ability of an update operation causing modifications above the leaf level is slight. Lanin

et al. [LSS87] predict a probability of (0.69s) - ' for B-tree applications with only inserts

and lookups, where s denotes the maximum number of dictionary elements a leaf may

hold.

Rightlink algorithms always use an optimistic strategy, and their descents never fail.

Since background processes run the restructuring phases and acquire their own locks,

32 CHAPTER 2. THE CONCURRENT B-TREE

there is no need to acquire writelocks during the descent. *

Lanin. et al. [LSS87] suggest a simple improvement to the optimistic descent strategy,

called the quick-spit. Parents of leaves, as well as the leaves, require writelocks during

the optimistic descent. while the rest still only require readlocks. This change allows the

optimistic descent to handle any restructuring in the bottom two levels of the tree, thus
further reducing the chances of retrying the update with a conservative descent. With

a random distribution of operations, the additional writelocks do not significantly affect

concurrency within the B-tree; they occur at the low levels in the tree, where contention

is usually slight. Simulations of quick-splitting show an improvement in throughput by

as much as 20W over that of ordinary optimistic strategies [LSS87].

Bottom-Up vs. Top-Down Updating

To handle restructuring above the leaf level. Bayer and Schkolnick [BS77] describe a

bottom-up strategy for lock-coupling algorithms, where changes start at the leaf level.

and then propagate up the tree. The consequence of such a strategy is that a conser-
vative descent must hold writelocks on all nodes visited until it reaches a descendant

that is "safe." We define a safe node as a node where the update operation's resulting

restructuring phase could not possibly cause it to be split or merged.

Mond and Raz [MR85] propose an alternative top-down strategy for lock-coupling

protocols that performs the restructuring phase with conservative descents. Before it

releases the writelock of a parent, the Mond-Raz strategy writelocks the appropriate child.
If required. the Mond-Raz pessimistic descent splits or merges the child and updates the

parent's state accordingly. Only after it updates the state of the parent, or if the child did

not need updating in the first place, is the parent's writelock released. The Mond-Raz

approach "piggybacks" the restructuring phase onto conservative descents. The main

advantage to this approach is that it can release a writelock to a node immediately after

performing some transformation on one of its children. In contrast, a pessimistic descent
with bottom-up restructuring may acquire writelocks for an arbitrary amount of time

(until it reach a '-safe" descendant).

The Bottom-up vs. Top-down issue is relevant only to lock-coupling strategies. It is

not an issue for link algorithms, which use optimistic descents and perform restructuring
in the background.

For lock-coupling strategies, it is unclear which of the two strategies is more efficient.

Bottom-up lock-coupling strategies have the disadvantage of holding writelocks during

the descent phase until they reach safe descendants. They also hold more writelocks

2.3. RELATED WORK 33

concurrently. Top-down strategies have longer latencies, since they must check all nodes
visited to see if they need restructuring. They may also perform unnecessary work, since

all unsafe nodes are restructured regardless of whether or not the update actually forces
the nodes to be restructured.

Merge-at-Half vs. Merge-at-Empty

Delet operations may reduce the contents of some B-tree nodes to the point where they

have to be merged with their siblings in order to maintain balance on the tree. Many
B-tree algorithms do not restructure nodes due to underflow conditions until the nodes

become empty. We refer to this strategy as merge-at-empty. Others use merge-at-half

protocols that restructure when nodes are half full. Merge-at-half preserves efficient space
utilization and keeps the height of the B-tree at O(lg n), where n is the number of dictio-

nary elements stored in the tree. Merge-at-empty strategies reduce the probability that

nodes need to be merged, thus reducing the amount of work performed by restructuring

phases of delete operations. This lowers data contention with other concurrent processes.

Johnson and Shasha [JS89] discovered that for most concurrent B-tree applications,
merge-at-empty produces significantly lower restructuring rates, and only a slightly lower

space utilization, than merge-at-half. They concluded that merge-at-empty is a better

strategy.

2.3 Related Work

Recent work related to this thesis fall in two basic categories: the analysis of concurrent

B-tree algorithms, and the development of new efficient concurrent dictionary algorithms

and data structures.

As pointed out by Johnson and Shasha [JS90], there has not been enough work study-

ing the performance of concurrent B-tree algorithms. Bayer and Schkolnick [BS77] and

Ellis [E1l80] determine the maximum number of concurrent operations their algorithms

can support, but do not predict performance. Analysis by Jipping [JFS85, JFSW90] is
very dependent on bus-based architectures, which do not scale well. Lanin, et al. [LSS87]

do not allow delete operations in their simulations. Lanin and Shasha [LS86] allow deletes.

but do not take into account resource contention, network latency, or replication.

Johnson and Shasha [JS90] propose a framework for an analytical model to investigate

all concurrent B-tree algorithms in a uniform fashion. However, their model also does

not take into account network latency or replication. Furthermore, their model assumes

34 CHAPTER 2. THE CONCURRENT B-TREE

the B-tree to be an open system, where the throughput of B-tree operations is equal to

the arrival rate of operations at each level in the tree. In applications with high data
and resource contention. this assumption may not be valid. For example, Lanin and
Shasha [LSS87] explain how high contention may cause a "bursty flow" effect, where

large numbers of operations are concentrated at various levels in the tree.

There has been smc recent work on developing alternative data structures that sup-
port efficient concurrent dictionary operations. Dally [DS85] develops a '-rootless" data

structure, called the Balanced Cube. A collection of nodes connected by a binary n-
cube communicajion network. the Balanced Cube avoids bottlenecks with its ability to

start dictionary operations at any arbitrary node in the Cube. However, the Cube's
performance is very architecture-specific. especially with communication networks. Also.,

finding efficient methods for dynamically adjusting the Cube's size is a difficult problem.
Herlihy [Her90] proposes a method for transforming sequential data structures to

wait-free structures using the atomic operation Compare&Swap. (Wait-free structures
are structures whose operations are guaranteed to complete in a finite number of steps.)

He uses this technique to build wait-free concurrent B-trees [Her89]. This work is very
recent. and the efficiency and feasibility of such structures in applications is unclear.

Shasha and Goodman [SG88] present a framework for developing and verifying con-
current algorithms for many sequential data structures. Examples include B-trees, hash
structures, unordered lists, and other sequential data structures that can support dictio-

nary operations.

Chapter 3

The Coherent Shared Memory

Algorithm

In this chapter, we present a new concurrent B-tree algorithm for systems that use co-

herent shared memory schemes. Because this algorithm uses the link method as opposed

to the lock-coupling method, it locks only one node at a time for inserts and lookups,

and at most two nodes concurrently for deletes. Furthermore ne algorithm allows most

of the restructuring phase for an update operation to be performed after the operation

returns. Because of these characteristics, this algorithm's performance should be better

than that of any proposed concurrent B-tree algorithm.

Most concurrent B-tree algorithms use lock-coupling to enforce concurrency con-

trol. While this technique guarantees correctness, it also sacrifices potential concurrency.

Lock-coupling causes entire sub-trees to be excluded from other concurrent processes.

Periodically, such algorithms require update operations to perform conservative descents,
which exclusively lock the root of the tree. This blocks all incoming dictionary opera-

tions. Lanin and Shasha [LS86] point out that for this reason, such B-tree algorithms do

not have good scaling properties.

In 1981, Lehman and Yao [LY81] introduced an augmented version of the concurrent

B-tree, called the B-link tree. Such a structure is simply a B-tree with every node

augmented by a pointer to its right neighbor. We call these pointers rightlinks. Nodes

that have no right neighbors have their rightlinks set to nil.

The use of rightlinks has two very important results. The first is that it allows

concurrent B-link tree algorithms to do away with lock-coupling entirely. As long as

descents stray only towards the left of the proper path, the rightlinks allows the descents

to correct themselves.

35

36 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

The second result is that it allows much of the restructuring phase of update operations
to be run in the background. Recall the example from Figures 2.4, 2.5, and 2.6. Splitting
a node during an insert operation can be a two-phase procedure. First, a half-split

transformation splits a node (Figure 2.5). Then, a complete-split phase updates the

parent of the split node after the insert operation returns (Figure 2.6).

The first result increases concurrency by allowing process overtaking, thus reducing
the synchronization between independent processes. The second result not only pushes

restructuring into the background, but also guarantees that optimistic descents in the

Lehman-Yao algorithm are always successful; there is no need to acquire writelocks during
descents, since restructuring phases acquire their own locks. This eliminates the need for

writelocks on the anchor, the root, or other high-level B-tree nodes during the descent.

Sagiv [Sag86J showed how to implement the Lehman-Yao algorithm such that lookup

and insert operations lock only one node at a time. This further increases concurrency,

by minimizing the number of locks that need to be held. Also. Sagiv augmented the
B-link tree to improve performance, e.g., Sagiv adds to the anchor a set of pointers to

the leftmost node in each tree level.

Unfortunately, Lehman and Yao did not provide for a restructuring phase for delete
operations: they did not merge under-utilized nodes. Thus their B-link tree data structure
would not shrink, even if an application deleted all the dictionary elements in the tree.

They proposed that the tree be rebalanced off-line.

Both Salzberg [Sa185] and Sagiv [Sag86] proposed independent background processes,
which operate in parallel with processes performing dictionary operations. These pro-

cesses visit nodes in the tree and perform merge operations on under-utilized nodes. Such
solutions, while correct, are not very elegant. It is unclear how the number of processes

invoked or the frequency of their invocations affect performance. Also unclear is how

different operation patterns can affect the performance of these processes.

Sagiv suggested an alternative approach where the above background processes are
created only when leaves become under-utilized. These processes would be removed once
the required restructuring is completed. Unfortunately, Sagiv's processes did not merge

nodes in a uniform fashion; items were sometimes moved to the right, sometimes to the
left. This meant that Sagiv's dictionary operations could "become lost," and descent

phases would have to backtrack, or even start over.

Lanin and Shasha [LS86] proposed a restructuring phase for deletes that was anal-

ogous to Lehman and Yao's two-phase split procedure for inserts. First, a half-merge

transformation merges two nodes. Later. in a background process, a complete-merge

37

X 15

L right , sep :15Z

oe efnode &m oe eW node

(a) Sample tree.

(b) Incorrect strategy.

Yzriglatsep:15

(c) Inefficient strategy.

Figure 3.1: Example half-merge strategies.

38 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

transformation removes from the parent of the merged nodes the downlink pointing to

the deleted node.

When a node becomes under-utilized, Lanin and Shasha proposed that it be merged

with its right neighbor. since rightlinks make the neighbor easy to find. Using the left

neighbor would mean either maintaining "leftlinks," or extending the algorithm to search

for left neighbors. Given the decision to merge an under-utilized node with its right

neighbor. the question remains of exactly how this should be done. Figure 3.1. which

shows two possible half-merge implementations, illustrates the difficulty in producing

correct and efficient half-merge and completc-mergf operations. Nodes that are X'ed

out are -'marked" as deleted. In Figure 3.1(a). we show a simple tree, where we would

like to merge leaves Y and Z. In (b). we move all the contents in Z to Y. and update

Y's rightlink to Z's right neighbor. This solution is incorrect, since at the end of the

half-merge operation. there is no way for processes that access Z to be directed to the

proper node Y. In (c). we move all the contents in Y to Z. and update the rightlink of

Y's left neighbor to point to Z. This solution is correct. but difficult to implement, since

it requires finding and updating Y's left neighbor.

Lanin and Shasha proposed a solution for both the incorrectness problem in (b) and

the implementation problem in tc). Consider the example in Figure 3.2. In (a), we present

an B-link tree structure. In (b), we show Lanin and Shasha's half-merge operation that

merges leaves Y and Z. The operation moves data from Z to V. sets Y's rightlink to Z's

right neighbor, and marks Z as deleted. It sets the rightlink of Z to point left towards

Y", the node to which Z's former contents have been moved. Thus any process that

accesses Z after it has been marked as deleted can redirect itself to Y via Z's rightlink.

This elegant solution writelocks only two nodes concurrently, and need not search for left

neighbors.

The complete-merge operation in this example is straightforward. It locks the parent

and removes the downlink that points to the deleted node, as well as the separator to

the downlink's immediate left. We see the result of a completErmerge in Figure 3.2(c).

Unfortunately the complete algorithm provided by Lanin and Shasha contains a minor

error. In addition, other areas in the algorithm can be optimized. In this chapter, we

present a complete B-link tree algorithm based on the ideas of Lanin and Shasha, but

with the following modifications:

9 We present a more efficient approach to maintaining the root pointer in the B-link

tree's anchor.

39

lsome leaf node

(a) Sample tree.

x 1

z

(b) Half_mcrge transformation.

sorne leaf node 1- 811 1 1soelafnd

(c) Completemerge transformation

Figure 3.2: Correct merge strategy.

40 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

" We propose that left separators of nodes be stored directly in the node. Lanin and

Shasha's algorithm requires processes to estimate left separator values based oil the
states of previously visited nodes. Besides requiring extra overhead, this estimation

may sometimes cause restructuring phases of inserts and deletes to do unnecessary

work.

* We discuss an alternative approach to the complete-merge operation if the two

nodes merged by the halfmer9q have different parents. (The example in Figure 3.2

displayed the more common case where the two merged nodes have the same par-

ent.) Our approach should achieve better performance and use less memory than

the one suggested by Lanin and Shasha.

We explain and correct a problem with Lanin and Shasha's algorithm. The so-

lution recluires additional synchronization needed to coordinate independent corn,-

platc-split and cornpletcmerge operations.

" We discuss the possibility of maintaining "parent pointers" in each node. We

present the advantages of such an approach.

We organize the chapter as follows. Section 3.1 describes the data structures used to

implement a B-link tree. The remaining sections present our entire algorithm. Section 3.2

defines a number of procedures used by our algorithm. Sections 3.3, 3.4, and 3.5 present

the lookup. insert, and deletc operations respectively. Section 3.6 describes the additional

synchronization needed to coordinate independent complete-split and complete-merge

operations. Section 3.7 presents the idea and the advantages of maintaining parent

pointers at each noc,. Finally, Section 3.8 summarizes the chapter.

3.1 The B-Link Tree

We construct the data structures for the B-link tree by augmenting the data structures for
the B-tree. This section presents the extra fields that need to be added to our pseudocode

representations of the B-tree data structures.

3.1.1 B-Link Tree Nodes

Each l3-link tree node n has the following fields in addition to the ones presented in

Section 2.1.1:

3.1. THE B-LINK TREE 41

proc new-node (1)
9/ builds new (empty) biree node of level I
% allocate memory for new node

I node := allocate memory
9/(znitialize fields

2 node.level =
3 node.size 0
4 if l = 0 then

%I MAXKEY is global variable denoting largest possible key
node.right-sep := MAX-KEY

(C for i = 1 to MAXFANOUT do
7 node.k[i] nil
8 node.d[i] nil
(,' end

10 else
% % MIAVKEY is global variable denotzng smallest key

11 node.s[O] := MINKEY
11- for i = 1 to MAXYFANOUT do
13 node.s[i] := nil
14 nodc.p[i: nil
1.5 end

16 node.split-waiters := nil
17 node.merge-waiters := nil
18 end
19 node.rightlink nil
20 node.marked? false
21 node.left-most? := false
22 return node
23 end new-node

Figure 3.3: new.node(l) procedure.

9 n.rightlink is a pointer to n's right neighbor. If n has no such neighbor, n.rightlink

is set to nil.

* n.marked? is a boolean flag that marks deleted nodes. It is initially set to false.

e n.left-most? is a boolean flag that denotes whether or not n is the leftmost node
in its level.

e If n is a non-leaf, then n.spilwaiters and n.mergcwaiters are linked lists that are

initially set to nil. We fully explain these fields in Section 3.6.

The restrictions on the B-link tree nodes in our algorithm are not as stringent as

in other B-tree algorithms. Our algorithm does not require that every non-root node

in the tree have one parent; some nodes can temporarily have no parents. Also, if a

42 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

downlink in a non-leaf node points to node n, then the separators stored to the immediate

left and right of the downlink are not necessarily equal to lefLsep(n) and right-sep(n),

respectively. Our algorithm allows lefLsep(n) and right-sep(r) to be less than or equal to

the two separators stored to the downlink's immediate left and right. We discuss these

points in more detail during the presentation of the algorithm.

Figure 3.3 presents the pseudocode procedure for creating and initializing new B-link

tree nodes. We use the global variable MAXFANOUT to denote the maximum fanout

of the tree. We assume the value assigned to MAXFANOUT to be an even integer.

3.1.2 B-Link Tree Anchor

The anchor of a B-link tree is somewhat different from an ordinary B-tree's. A B-link
tree anchor a contains the following fields:

" a.lqtmost-nodes is an array of pointers. The pointer a.1eftmost-nodes[i] points to

the leftmost node in the tree's i'th level. If the tree's height is less than i, then the

pointer is set to nil.

* a.rootlevd stores the height of the tree's "root."

We do not need the field a.root-pointer (described in Section 2.1.2), since the root

of the tree is just a.leftmost-nodes[a.root-level]. Also, a.root-level does not necessarily

contain the height of the actual root of the tree. As long as a.root.level is less than or

equal to the actual height of the tree, the algorithm will work properly. The algorithm
does makes an effort, for performance's sake, to keep a.root-level at, or close to, the

actual height of the tree.

Figure 3.4 presents the pseudocode procedures for creating and initializing new B-link

trees. In this chapter, we assume that the anchor of a B-link tree is denoted by the global
variable ANCHOR.

3.2 Miscellaneous Functions

Several functions on B-link tree nodes are used in the rest of the chapter:

* covers? takes a node n and a key k, and returns true iff k E coverset(n) and

n.marked? = false.

3.2. MISCELLANEOUS FUNCTIONS 43

proc newly-tree ()
OX returns an anchor to an empty B-link Tree.
% build root

1 new-root := new-node(O)

2 anchor := new-anchor()
3 anchor.leftmostnodes[0] := new-root
4 return anchor
5 end new-ly-tree

proc new-anchor)

7. builds and returns a new btree anchor

97 allocate memory
1 anchor := allocate memory

7 Mznitzahzc fields
2 anchor.rootlevel := 0

%, MAXZEIGHT is global variable denoting maximum height of tree.

3 for i = 0 to MAX-HEIGHT do

4 anchor.leftmost-nodes[i] := nil
5 end
G return anchor
7 end new-anchor

Figure 3.4: new-ly-tree() procedure.

" successor takes a non-leaf node n and a key k. If k > righltsep(n) or n.marked =

true, then successor returns n.rightlink. Otherwise, it finds the largest separator

s stored in n such that s < k, and returns the downlink stored to s's immediate

right. If left-sep(n) >_ k, then successor(n, k) is undefined.

" reaches? takes a node n and a key k, and returns true iff the leaf I that covers k is

reachable from n. We formally define "reachable" as follows. Define the function

succssor', where i > 0, as follows:

successor(n, k) n =0,

s successor(successor'- ' (n, k), k) otherwise.

k is reachable from n, iff for some finite integer j, successori(n, k) = 1. For our

algorithm, it turns out that leftlsep(n) < k iff reaches?(n, k) = true. (The proof

for this has been sketched out, but due to space and time constraints of the thesis,

it is not included.) For the rest of the thesis. we will use the above definition

of "reachable" (as opposed to "graph reachable" which only checks if nodes are

connected via a finite number of edges.)

44 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc lylookup (k)
% readlock leaf that covers k

1 node := lookup-descent(k)
% if k zs stored in node, return data. else return nil

2 i := findJkey(node, k)
3 if i = nil then
4 readunlock(node)
5 return nil
6 end
7 answer := i-th-data(node, i)
8 readunlock(node)
9 return answer

10 end ly-lookup

Figure 3.5: ly-lookup(k) procedure.

" is-leaf? takes a node and returns true iff the node is a leaf.

" full? takes a node n, and returns true iff the number of dictionary elements or

downlinks in n is equal to MAXFANOUT.

" almost-empty? takes a node n. If n is a leaf, it returns true iff n is not the rightmost

leaf and has only one dictionary element stored in it. If n is a non-leaf, it returns

true iff n only has one downlink.

" find-key takes a leaf node I and a key k. It is defined only if k E coverset(l). If k is

the i'th smallest key stored in 1, find-key returns the index i. Otherwise, it returns

nil.

" iLth-data takes a leaf node 1 and index i and returns the data associated with the

i'th smallest key stored in 1.

" find-child takes a non-leaf node n, a separator value s, and a downlink to a child

node p. If p is the i'th leftmost downlink stored in n and s is the separator stored

to p's immediate left, then find-child returns i. Otherwise, it returns nil.

* findsep takes a non-leaf node n and a separator value s. It returns the integer i iff

s is the i'th leftmost separator stored in n, else it returns 7v 1.

" insert-key takes a leaf node 1, a key k, and a data value d. It is defined only if I is

not fIll. insert-key inserts the dictionary element < k, d > into 1.

3.3. THE LOOKUP OPERATION 45

proc lookup-descent(k)
% get root of tree

1 readlock(ANCHOR)
2 level ANCHOR.rootjevel
3 node ANCHOR.leftmostunodes[level]
4 readunlock(anchor)

% descend down tree to leaf level
5 readlock(node)
6 while ! is~eaf?(node) do

% find next node to visit
7 next := successor(node, k)
8 readunlock(node)
9 node := next

10 readlock(node)
11 end

%, move along leaf level to proper leaf. using readlocks
12 while ! covers?(node, k) do
13 next := node.rightlink
14 readunlock(node)
15 node := next
16 readlock(node)
17 end
18 return node
19 end lookup-descent

Figure 3.6: lookuptdescent(k) procedure.

" insert-child takes a non-leaf node n, a separator value s, and a downlink to a child
node p. It is defined only if n is not full and inserts p into n. insert-child inserts s
immediately to the left of p.

* delete-key takes a leaf node 1 and an index i, and removes the dictionary element
with the i'th smallest key from 1.

" deletechild takes a non-leaf node n and an index i, and removes the i'th leftmost
downlink from n as well as the separator to the immediate left of the downlink.

3.3 The Lookup Operation

In this section, we present the lookup operation, shown in Figure 3.5. ly-lookup(k) takes as
an argument a key k. If the tree contains a dictionary element with key k, then ly-lookup
returns the element's data value. Otherwise, it returns nil. ly.lookup first performs the
descent phase by calling the procedure lookup-descent (line 1 in Figure 3.5).

46 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc lyinsert (k, d)
% writelock and return leaf that covers k, using a stack to keep

% track of path taken
1 stack new-stack()
2 node update-descent(k. stack)

% if k is stored in node, return nil

3 if find-key(node, k) != nil then
4 writeunlock(node)
5 return nil

6 end
9/' if nodt is not full, then insert data into nodt

7 if ! full?(node) then

8 insert-key(node, k, d)
9 writeunlock(node)

10 return nil
11 end

% if node is full, then split it
12 return splitleaf(node. k. d, stack)
13 end ly-insert

Figure 3.7: ly-insert(k, d) procedure.

The procedure lookup-descent(k), shown in Figure 3.6, takes as an argument a key

k, and readlocks and returns the leaf node that covers k. It first readlocks the anchor

and finds the root of the tree (lines 1-4 in Figure 3.6). It then performs two while

loops to reach the leaf that covers k. The first while loop (lines 5-11) uses readlocks

and the successor function to descend down the tree from the root to the leaf level.

The second while loop (lines 12-17) uses readlocks and the covers? procedure to travel

through rightlinks until it finds the leaf that covers k. Note that these loops hold only

one readlock at a time. Finally, lookup-descent returns the node that covers k (already

readlocked) (line 18).

After calling lookup-descent, ly-lookup performs its decisive operation (lines 2-9 in

Figure 3.5). lookup-descent has already readlocked the leaf that covers k. If k is not

stored in the leaf, then ly-lookup unlocks the leaf and returns nil. Otherwise, ly-lookup

unlocks the leaf and returns the data associated with k.

3.4 The Insert Operation

In this section. we present the insert operation, shown in Figure 3.7. ly-insert(k, d) takes

as arguments k and d, where < k, d > is the dictionary element to be inserted. Since

inserts are more complicated than lookups, we divide our discussion among the three

3.4. THE INSERT OPERATION 47

proc update-descent(k, stack)
% get root of tree

1 readlock(ANCHOR)
2 level ANCHOR.rootJevel
3 node ANCHOR.leftmostnodes[level]
4 readunlock(ANCHOR)

% descend to leaf level, using stack to keep track of path
5 readlock(node)
6 while ! is-leaf(node) do

9/ find nert nod6 to visit
next := successor(node, k)

8 readunlock(node)
9 if next and node are connected via a downlink then

10 push(stack. node)
11 end
12 node := next
13 readlock(node)
14 end

'X move along leaf level to proper leaf, uszng writelocks
15 readunlock node)
16 writelock(node)
17 while I covers?(nodt. k) do
18 next := node.rightlink
19 writeunlock(node)
20 node := next
21 writelock(node)
22 end
23 return node
24 end update-descent

Figure 3.8: update-descent(k, stack) procedure.

phases of the operation.

3.4.1 Descent Phase

ly-insert(k, d) first calls update-descent to perform its descent phase (lines 1-2 in Fig-

ure 3.7). update-descent(k, stack), shown in Figure 3.8, takes as arguments a key k and
a stack stack. It writelocks and returns the leaf that covers k, and uses stack to record
the path taken during the descent phase. update-descent first readlocks the anchor and
finds the root of the tree (line 1-4 in Figure 3.8). It then uses two while loops to reach
the leaf that covers k. The first while loop (lines 5-14) descends from the root of the

tree to the leaf level using readlocks and the successor function. Whenever a downlink
is traversed, updatc-descent pushes the node last visited in the previous level onto the

stack. The second while loop (lines 15-22) uses writelocks and the covers? function to

48 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc split-leaf (leaf, k, d, stack)
1 build new split leaf and divide contents of leaf.

I newJeaf := divideleaf(leaf)
ci insert data element into proper leaf

2 if covers?(leaf. k) then
3 insert-key(leaf, k, d)
4 else
5 insert-key(newileaf, k. d)
6 end

7(unlock leaf
7 new-sep := righ t.sep(leaf)
8 writeunlock(leaf)
9 fork complete-split(new.sep, new-leaf, stack, 1)

10 end split-leaf

Figure 3.9: split_!eafl leaf. k. d. stack) procedure.

traverse rightlinks in the leaf level until it reaches the leaf that covers 0
updatc-descent returns this leaf (already writelocked) (line 23). Note that this proce-

dure locks only one node at a time.

3.4.2 Decisive Operation

After calling update-descent, ly-insert performs its decisive operation (lines 3-12 in Fig-
ure 3.7). It first checks if the leaf that covers k stores a dictionary element with key k.
If such an element already exists, then ly-insert unlocks the leaf and returns (lines 3-6).
Otherwise, it must insert the element < k, d > into the dictionary. If the number of
dictionary elements stored in the leaf is not equal to the upper limit specified by the
global variable MAXF4NOUT, then ly-insert inserts < k,d > into the leaf, unlocks
the leaf, and returns (lines 7-11). If the number of elements stored in the leaf is equal
to MAX.FANOUT, then the leaf must be split to make room for the new dictionary
element. ly-insert accomplishes this by calling the procedure split-leaf (line 12).

split-leaf(leaf, k, d, stack), shown in Figure 3.9, takps as arguments a leaf leaf, key k,
data value d. and stack stack. It performs a half-split on leaf, inserts element < k, d -
in the appropriate leaf, and then forks an independent process to do a complete-split

operation.

split-leaf calls divide-leaf to split leaf in two (line 1 in Figure 3.9). divide-leaf(leaf),

'Alternatively, lyansert could use readlocks until the node that covers s is reached, in which a
writelock is then acquired. (After the writelock, ly-insert would have to check if the node still covered
s.)

I L l l l I I I

3.4. THE INSERT OPERATION 49

proc divide-leaf (leaf)
9Y build new leaf

1 new-leaf := new-node(O)
% fill new-leaf with righi half of leaf

2 leaf.size := MAXFANOUT/2
3 newileaf.size := MAX-FANOUT/2

% copy half of array contents to new-leaf
4 for i = I to MAXFANOUT/2 do
5 new-leaf.k[i] leaf.k[i + (MAXFANOUT/2)]
6 newileaf.d[i] := leaf.d[i + (MAXFANOUT/2)]
7 end

/ update right-sep values
8 newleaf.right.sep := leaf.right-sep
q leaf.right-sep := leaf.kfleaf.size]

97 update rzghlznks
10 new-leaf.rightlink := leaf.rightlink
11 leaf.rightlink -= newieaf
12 return new-leaf
13 end divideleaf

Figure 3.10: divide.leaf(lea) procedure.

shown in Figure 3.10, takes leaf leaf as an argument, and returns a newly created leaf.

divide-leaf partitions the old contents of leaf between leaf and the new leaf. It transfers

the right half of the dictionary elements in leaf to the new leaf (lines 2-7 in Figure 3.10).

It then updates the right-sep fields of both leaves (lines 8-9). It finally sets leaf.rightlink to
point to the new leaf, and the new leaf's rightlink to point to the old value of leaf.rightlink

(line 10-11). divide-leaf returns a pointer to the new leaf (line 12).

After calling divide-leaf, split-leaf inserts the new dictionary element < k, d > into
either leaf or its new neighbor, depending on which one covers k (lines 2-6 in Figure 3.9).

split-leaf finally unlocks leaf (lines 7-8), and forks a background complete-split operation,
passing as arguments a pointer to the new leaf and the new separator between leaf and

the new leaf (line 9).

3.4.3 Restructuring Phase

The restructuring phase for an insert operation begins when split-leaf forks off an in-
dependent process to perform a complete-split. complete-split(s,p, stack, 1), shown in
Figure 3.11. takes as arguments a separator value s, downlink p, a stack of node pointers

stack, and a tree level 1. It assumes the node pointers in stack point to nodes ordered in

consecutive increasing tree level, starting at level 1.

50 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc complete-split (s, p, stack, 1)
%K find and writelock the node in the I'th level which covers k

1 node := find.parent(s, stack, 1)
% if s is already stored in node, that means we have to wait

2 if findsep(node, s) != nil then
3 push(stack, node)
4 insert <s, p, stack> into node.split-waiters
5 writeunlock(node)
6 return
7 end

' check if any uaitzng operations can be enabled
8 start waiters(s, 1)

% if node is not full, insert s and p into node
9 if ! full?(node) then

10 insert-child(node, s, p)
% check if node could be a new root. If it is, update the anchor

11 if new-root?(node) then
12 fork updateroot(node.level)
13 end
14 writeunlock(node)
15 return
16 end

% else split-interior the node
17 split-interior(node, s, p, stack)
18 end complete-split

Figure 3.11: complete-split(s, p, stack, 1) procedure.

complete-split performs the following three tasks. First, it finds the level I node that
covers s. Second, it performs the complete-split operation by inserting s and p into the

node. If this insertion causes the node to overflow, then the node must be split. To
propagate this split, it then invokes a complete-split on the next higher level in the tree.
Finally, if the above tasks create a new root in the tiee, complete-split updates the anchor
to point to the new root.

Finding the Parent Node

To find the level 1 node that covers s, complete-split calls the procedure find-parent
(line 1 in Figure 3.11). Figure 3.12 presents pseudocode for find-parent(s, stack, l). The
procedure takes as arguments a separator value s, a stack of node pointers stack, and a
tree level 1. It writelocks and returns a level I node that covers s.

find-parent first calls the procedure start-nodes, which writelocks and returns a level
I node n such that leflsep(n) < s (line 1 in Figure 3.12). The while loop in find-parent

(lines 2-7) uses writelocks and the function covers? to traverse rightlinks to reach the

3.4. THE INSERT OPERATION 51

proc find-parent (s, stack, 1)
V(get initial node in level I and writelock it

1 node := start-node(s, stack, 1)
% move along rightlinks until node covering s is reached

2 while ! covers?(node, s) do
3 next := node.rightlink
4 writeunlock(node)
5 iidt z- next
6 writelock(node)
7 end
C return node
9 end find-parent

Figure 3.12: find-parent(s, stack, 1) procedure.

node that covers s. 2 This final node is writelocked and returned by find-parent.

The procedure start-node(s. stack, 1), shown in Figure 3.13, takes the same arguments

as find-parent. It writelocks and returns a level 1 node n such that left-sep(n) < s. The

node must reach s; otherwise, there will be no way for find-parent to find the level I

node that covers s. If the stack is not empty, start-node pops the topmost node from the

stack and writelocks it. If this node reaches s, start-node returns the node (lines 1-8 in

Figure 3.13). We discuss why the node popped from the stack must be checked to see if

it reaches s when we present the delete operation.

If the stack is empty (which means either the tree has grown since the descent phase,

or a new root needs to be created), or if the node popped from the stack does not reach

s, start-node will readlock the anchor and find the leftmost node in level l (lines 9-15).'

If such a node exists, it is writelocked and returned. Otherwise start-node creates a new

root by calling the procedure make-root, and returns this new root. The pseudocode for

make-root is found in Figure 3.16 and will be discussed later.

CompleteSplitting the Node

After complete-split(s, p. stack, 1) calls find-parent to writelock and return the level I node

that covers s (line 1 of Figure 3.11), some steps are taken to coordinate the complete-split

with other independent complete-split and complete-merge operations (lines 2-8). For

2 Alternatively, find-parent could use readlocks until the node that covers s is reached, in which a
writelock is then acquired. (After the writelock, find-parent would have to check if the node still covered
s.)

3Alternatively. instead of using the leftmost node in 1, we can perform a descent from the root using
the argument s to find a level I node that reaches s.

52 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc start-node (s. stack, 1)
% if stack zsnt empty, pop the parent

I if! emptystack?(stack) then
2 node := pop(stack)
3 writelock(node,
4 if reaclies?t node, s) then
5 return node
6 end
7 writeunlock(node)
8 end

' lookup ANCHOR. if node zs there, return it
9 readlock(ANCHOR)

10 node := ANCHOR.leftmost-nodes[l]
11 readunlock(ANCHOR)
12 if node !- nil then
13 writelock(node)
14 return node
15 end

X els build new root and return it
16 node := make-root(I)
17 writelock(node)
18 return node
19 end start-node

Figure 3.13: start-node(s, stack, 1) procedure.

now, we will ignore these steps. We discuss them in detail in Section 3.6. If the node

returned by find-parent is not full, complete-split inserts the new separator and downlink
(lines 9-10). It then checks if the insertion requires an update to the root-level field of
the tree's anchor (lines 11-13). We discuss how the anchor field is updated below.

If the node returned by find-parent is full, then complete-split cannot insert the
separator and downlink into the node until it has been split, so complete-split calls
split-interior (line 17 of Figure 3.11). Figures 3.14 and 3.15 present split-interior and
its accompanying procedure divide-interior. These procedures perform half-split opera-
tions on non-leaf nodes, and are analogous to the procedures split-leaf and divide-leaf
Note that line 9 in divide-interior calls a procedure divide-waiters to manipulate the
linked lists node.split-waiters and node.merge-waiters. This procedure will be presented
in Section 3.6, which discusses the purpose of these lists. For now, we will ignore them.

Creating a New Root

There are two important issues in the creation of a new root. The first is synchronization:

two independent processes should not both create new roots at the same time. The second

3.4. THE INSERT OPERATION\ 53

proc spiit-nterior (node, s. p, stack)
X build new nod(

1 new-node := divideinterior(node)
% insert data into proper leaf

2 if covers?(node. s) then
8 insert-child(node, s, p)
4 else
.5 insert-child(new-nodc. s, p)
6 end

'/(unlock nodc
7 new-sep := right-sep(node)

I := node.level + 1
9 writeunlock(node)

X complete-sphl
10 complete.split(new-sep, new-node. stack, 1)
11 end split-interior

Figure 3.1.4: splititerior(nodc, s, p, stack) procedure.

proc divide-interior(node)
% create new nod(

1 new-node := new-node(node.level)
(copy half of array contents to new-leaf

2 new-node.size := MAXFANOUT/2
3 node.size := MAXFANOUT/2
4 new-node.s[O] = node.s[MAXFANOUT/2]
5 for i = 1 to MAXFANOUT/2 do
6 new-node.s[i: node.s[i + (MAXFANOUT/2)]
I new-node.p(i] := node.p[i + (MAXFANOUT/2)]
8 end

% divide waiters lists
9 divide-waiters(node, new-node)

% set rightlhnks
10 new-node.rightlink := node.rightlink
11 node.rightlink := new-node
12 return new-node
13 end divide-interior

Figure 3.15: divideinterior(node) procedure.

54 CHAPTER 3. THE COHERENT SHA RED MEMORY ALGORITHMI

proc rnake.root (l)
' writetock anchor

I writelock(ANCHOR)
4 check zt nod(zs already then

'2 if AN CHOI{-left most --odesl] 1 nil then
3 root = ANCHOR.]eftrnost-.nodes[If
4 writeuntock(ANCHOR)

5 return~root)
6 end

.bnld nCuroe00
new-roi: new-node(1)

S new-root.sre 1
P iiew-root.s~l] MAX-KEY

I(I rew-root poinitercl ANCIIOI{ iftmost-nodcs . 1
11 new -root. left _rost? true

(;N place new root in anchor
1'2 ANCHOFI.leftinost -nodes[P]: newjroot

Dwrit eun lock(AN CHORt)
1.1 return ne'w-roof
15: en(I makc-rot

Figure :3.16: rnakt-roo(1) procedure.

is maintaining the root Jevcl field in the B-link tree's anchor.

The procedure makc-root(l), shown in Figure 3.16. solves the first problem. It takes as

an argument an integer 1, and returns the leftmost B-tree node in level 1, creating a new

root in level if niecessary. mnakeroot writelocks the anchor and checks for the existence of

nodes at level 1 before creating a new root. This protocol prevents independent processes

from concurrentiv creating new roots, since writelocking the anchor sequentializes; them.

Mlaintainig- the roo!Jlevtl field In the anchor is a separate problem. While the cor-
rectness of the our algorithm is ensurcd as long as there exists a leftmost node in the level

specified bNy the anchor's root-level field, the algorithm's efficiency depends on how close
root-level is to the actual height of the tree. Updating r-oot-Jevel during the make-root

procedure would be correct but inefficient, since the new root only has one downlink, so

all descents would chase one extra pointer until a cornple t csplit operation on the new
root added a second downlink. Instead, we update the anchor's root ievel during the
cornplete..sphl procedure.

Recali Figure 3.11. which presents the cornplec-split procedure. Right after inserting

a separator and a dlownlink into the niode (line 10 in Figure 3.11). completc-split checks

i f the node is it new root that just received a second downlink. It does this bv calling
the procedurc n(irroot? (line 11). which r'.turns true ifi the node is the only node in its

3.4. THE INSERT OPERATION 55

level (i.e.. a leftmost node with no right neighbor) and has two downlinks. If new-root?

returns true. then we may have to update the anchor's root-level field.

Implementing the update is tricky, in that we must prevent root-level from being set

to an "outdated value." For exampie, it is possible for independent processes to add (or

delete) further levels to the tree between the time complete-split releases the lock on the

root and the time the anchor's root-level field is updated. Suppose these changes have

caused rooL-irel to be modified to a more recent value. Then the update corresponding

to our complete-split procedure might cause root-level to point to a level further away

from the actual root.

Sagiv [Sag86] suggests that a process maintain a writelock on the root until it up-
dates the anchor's root-level field. Therefore, the tree cannot grow or shrink in height

until the update has completed. While correct. this solution requires holding writelocks

concurrently on both the root and the anchor, the two data structures most commonly

accessed in the tree.

Lanin and Shasha propose a separate continuously running background process called

the critic, which periodically checks the tree for the best root-level value. This reduces

data contention by allowing the writelock on the root to be released as soon as possible.

However, it also forces the mainte .ance of an independent process, even though it rarely

performs useful work. (In most B-tree applications, the probability that an update op-

eration will change the height of the tree is slight. For example, Lanin, et al. [LSS87]

predict the probability of an insert causing the root to split in applications using only

inserts and lookups to be (0.69 * MAXFANOUT)-', where I is the height of the tree.)

Rather than maintaining a continuously running process, we suggest invoking such a
critic whenever needed. and removing it when it has finished its task. In Figure 3.11,

during the complete-split procedure, if the new-root? procedure in line 11 discovers that

the anchor's root-level field requires updating, complete-split will fork off an independent

update-root process, unlock the node, and return (lines 12-16).'

update-root(l), presented in Figure 3.17, writelocks the anchor (line 1 in Figure 3.17)

and checks if the new "root level candidate" I is a better root level than the current

ANCHOR.root-level. If ANCHOR.leftmost-nodesl] = nil. then update-root does noth-

ing and returns, since the level I does not yet contain any nodes (lines 2-5). If I =
ANCHOR.root-level, then the procedure also does nothing (lines 6-9). Otherwise it must

check if 1 is indeed a better value for ANCHOR.root-levcl. If I > ANCItOR.rootlevel, then

4Alternatively, completcspht need not fork off an independent process; it could just run update-root
directly,

56 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc update-root (1)
1 writelock(ANCHOR)

%7 check if I has a leftmost node
2 if ANCHOR.leftmost_nodes[l] = nil then
3 writeunlock(ANCHOR)
4 return
5 end

i if I = root-level then do nothing
6 if I = ANCHOR.rootilevel then
7 writeunlock(ANCHOR)

6 return
9 end

% readlock node to vzszt

10 if I > ANCHOR.root-level then
11 candidate ANCHOR.leftrnost.nodes[l]
12 else
13 candidate := ANCtIOR.eftmost-nodes[I+ 1
14 end
15 read lock(candidate)

';' check if rootlevel can be updated

16 if (I > ANCHOR.rootievel && (I old-root?(candidate))) fl
17 (1 < ANCHOR.rootievel && old-root?(candidate)) then
is readunlock(candidate)
19 ANCHOR.root-level := 1
20 writeunlock(ANCHOR)
21 return
22 end
23 readunlock(candidate)
24 writeunlock(ANCHOR)
25 return
26 end update-root

Figure 3.17: update-root(l) procedure.

the update can occur if the leftmost node in level I is not useless. By "useless," we mean

the node is the only node in its level and has only one child. If I < ANCHOR.root-level,

then the update can occur if the parent of the leftmost node in level 1 (i.e., the leftmost

node in level I + 1) is useless. We complete this check by first readlocking the node in

question (lines 10-15), then using the procedure old-root? (which checks if a node is

useless) to determine if the anchor's root-level field should be updated (lines 16-26).

We invoke vpdattcroot whenever a complete-split operation detects that the root level

might have increased. As we shall see, we also invoke it during delete operations, when a

delete detects that the root level might have decreased. Unlike Lanin and Shasha's critic,

it is not a continuously running process, but one created on demand. Such a method

avoids needless work that a constantly running process might perform while waiting for

3.5. THE DELETE OPERATION 57

proc ly-delete (k)
c wntelock and return leaf that covers k

1 stack new-stack()
2 node update-descent(k. stack)

7 if k ?s not stored zn node, return nil
3 index := findikey(node, k)
4 if index = nil then
5 writeunlock(node)
6 return nil

end
7 unless nodt needs to be merged, delete

8 if! almost -empty?(node) then
9 delete-key(node, index)

10 writeunlock(node)
11 return nil
12 end

(, else merge node
13 return mergeJeaflnode, stack)
14 end lydelete

Figure 3.18: ly-delete(k) procedure.

the tree to grow or shrink.

3.5 The Delete Operation

In this section, we present a delete operation that uses a merge-at-empty strategy. As

stated in Section 2.2.4, merge-at-empty is suitable for most B-tree applications [JS89].

Figure 3.18 presents the procedure ly-delete(k). The procedure takes as an argument

k., the key value of the dictionary element we are deleting. The descent phase of the

deletc operation is identical to the descent phase of the insert operation; ly-delete calls

update-descent. Therefore in this section, we present only the decisive operation and

restructuring phase of deletes.

3.5.1 Decisive Operation

ly-delt writelocks the leaf that covers k by calling update-descent (lines 1-2 in Fig-

ure 3.18). It then performs its decisive operation (lines 3-14). First, it checks if any dic-

tionary element stored in the leaf has the key value k. If there are none, ly-delete returns

(lines 3-7). If there exists such an element, ly-delete uses the procedure almost-empty?

to check if the leaf is either the rightmost leaf or has more than one data element. If so,

58 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc merge-leaf (leaf, stack)
% lock right sibling

1 right-neighbor := leaf.rightlink
2 writelock(right-neighbor)

% join the leaves, mark right neighbor as deleted
3 old-separator := joinieaves(leaf, right-neighbor)

X unlock leaves
4 writeunlock(right-neighbor)
5 writeunlock(leaf)

(X Begin Restructuring Phase by forking cornplete-merg
6 fork complete-merge(old-separator, right-neighbor, stack, 1)
7 end mergeieaf

Figure 3.19: merge-leaft leaf, stack) procedure.

the data element is simply deleted and lydclete returns (lines 8-12). Otherwise, the leaf

has to be merged with its right neighbor, since removing its only data element would
leave it empty. To perform the merge. ly-delete calls the procedure merge-leaf.

Note that we have decided not to merge the rightmost leaf, even if it becomes empty.
(Recall that almost-empty? returns false if the node has no right neighbor.) Trying to
merge it with its left neighbor would be inconvenient and would require extra locks to
be held. Not deleting it may cause under-utilization of the B-link tree data structure.

However, such under-utilization will probably be slight, especially for applications where
the B-tree is growing over time.

Half-Merging Leaves

merge-leaf leaf, stack), shown in Figure 3.19. takes as arguments a leaf node leaf and a
stack stack. It assumes leaf has already been writelocked, and performs a half-merge
operation on leaf and its right neighbor after deleting from leaf all of its contents. It
first writelocks the right neighbor (lines 1-2 of Figure 3.19). It then calls the procedure
join-leaves (line 3).

join-leaves(left-leaf, right-lea), shown in Figure 3.20, takes as arguments two neighbor

leaves. It first saves the old separator value between the two leaves (line 1 in Figure 3.20).
It then moves the right separator and dictionary elements of the right leaf into the left
leaf (lines 2-7). Note that join-leavcs "overwrites" the left leaf's former contents. It then
sets the rightlink of the left leaf to the rightlink of the right leaf and the rightlink of the

right leaf to the left leaf (lines 8-9). Finally, join-leaves marks the right leaf as deleted,
and returns the old separator value between the two leaves (lines 10-11).

After calling join-leaves. merge-leaf unlocks the two leaves (lines 4-5 in Figure 3.19)

3.5. THE DELETE OPERATION 59

proc join-leaves (leftleaf, rightleaf)
1 old.separator := leftieaf.right-sep

% transfer items from right leaf to left leaf
2 left/eaf.right-sep := right-Jeaf.rightsep
3 leftleaf.size := rightieaf.size
4 for i = 1 to righteaf.size do
5 leftJeaf.k[i] := rightieaf.k[i]
6 leftleaf.d[] rightieaf.d[i]
7 end

'7(set rightlinks

6 left eaf.rightlink := rightleaf.rightIink
9 rightieaf.rightlink leaf

% mark right-leaf as deleted
10 rightieaf. marked? := true
11 return old-separator
12 end joinleaves

Figure 3.20: join-leaves(leftileaf, right-leaj) procedure.

and forks a cornplcetmerge operation.

Marking Nodes

When a node n is deleted, we set n.rnarked? to true, and n.rightlink to point to the node

that received n's former contents. This protocol allows ongoing concurrent operations

that access a marked node to redirect themselve- via rightlinks to the proper node.

Whenever an operation in our algorithm acczbses a node, it automatically traverses

the node's rightlink if the node has been marked as deleted. This is because:

* The successor function return the node's rightlink if the node is marked.

* The covers? function return false if the node is marked.

Having the successor function check for marked nodes ensures that descents from the

root to the leaf level in all dictionary operations traverse through rightlinks (e.g., lines 5-

14 of procedure updatedescent in Figure 3.8). The covers? check ensures that rightlinks

are traversed through marked nodes during the descent phase of dictionary operations

where processes --sweep right" along the leaf level (e.g., lines 15-22 of updatedescent

in Figure 3.8). and during the restructuring phase when processes search for a non-leaf

node in a given level that covers a separator value (lines 2-7 of procedure find-parent in

Figure 3.12).

60 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc complete-merge (s, p, stack, l)
% find and writelock the node in the l'th level which is covers s

1 node := findparent(s, stack, 1)
% check if we have to lock right neighbor

2 if s = right-sep(node) then
3 return two-node-cmerge(node, s, p, stack)
4 end

% elsc check if s and p are in node. if not, we have to wait
5 index := find.child(node, s. p)
6 if index = nil then
7 push(stack. node)
8 insert <s, p, stack> into node.merge-waiters
9 writeunlock(node)

10 return
11 end

11 check if any waiting operations can be enabled
12 start waiters(s. 1)

% delete s and p from stack
13 delete-child(node, index)

7 check if node is an old pointer
14 if old-root (node) then
15 fork update.root(node.level - 1)
16 end
17 writeunlock(node)
18 end complete-merge

Figure 3.21: complete-merge(s, p, stack, 1) procedure.

3.5.2 Restructuring Phase

The restructuring phase of a delete operation begins when the merge-leaf procedure forks
off a complete-merge. Figure 3.21 presents the procedure cornplete-merge(s, p, stack, 1).
complete-merge takes as arguments a separator value s, a downlink to a child p, a stack
stack, and a tree level 1.

complete-merge performs the following tasks. First, it finds the level I node that

covers s. Second. it removes s and p from the node. If s is a separator between two
level I nodes (thus p is stored in the right neighbor of the node that covers s), then
completemerge must treat this case differently from the common case where s is not a
separator between nodes. Also. if the level I node that covers s has only one downlink,

then completermerge must merge the node and its right neighbor before deleting s and
p. Afterwards, to propagate this merge, it invokes a complctemerge on the next higher

level in the tree.

3.5. THE DELETE OPERATION 61

Finding the Parent Node

Like the procedure complete-split. complete-merge uses the procedure find-parent (shown
in Figure 3.12) to find the node in level I that covers s. Recall that the argument stack
is a stack of node pointers pushed during an update operation's descent from the root to
the leaf level, stack records the last node traversed at each level by the descent.

Earlier in Section 3.4.3. we claimed that, the node popped from stack might not reach
s. While correct for the original Lehman-Yao algorithm and other modified algorithms
that do not include a two-phase merge operation [Sag86, LSS87], the assumption that
the node must reach s is not true with two-phase merges.

We present the following scenario as an example. Consider the B-link structure in

Figure 3.2 2(a) with a MA.XF4NOUT value of 6. Suppose a delete operation that deletes
key I causes the leaves Y and Z to half-merge, so the tree now looks like (b). Next. a
series of inserts and deletes cause the keys stored in leaf Y to be altered to (c). We
assume the completemerge operation (which we have not yet presented) forked by (b)'s
half-merge has not yet been performed. Suppose the next operation inserts 20 into the
tree. This operation will cause leaf Y to split, resulting in the structure in (d). The
nodes pushed onto the stack by the above insert are marked with a checkmark. The
insert then forks a complete-split operation to insert separator 0 and downlink Y' into
W, the level 1 node that covers 0. The left separator of X, the node popped from the

stack, is greater than 0, so A' does not reach 0.

Lanin and Shasha recognized this problem in their algorithm. However, because their
B-link tree nodes did not locally store their own left separator values, the check of whether
the node popped from the stack reaches s is not so straightforward; they proposed that

estimations of a node's left separator value be pushed onto the stack along with the node
itself during the descent phase of update operations. This estimation is an upper bound of
the actual left separator value and can be obtained from the states of previously visited
nodes in the descent. Since the estimations are guaranteed to be an upper bound of
the actual left separator value, their algorithm is correct. However, this puts additional
overhead on update operations; the descent phase must compute the estimations as well
as push and pop twice as many elements onto and off of the stack. This may be expensive

in message-passing architectures. Also, it is possible for the restructuring phase to think
the node popped from the stack does not reach s when it actually does. As a result,

needless work may be performed.

Our algorithm avoids the problems of Lanin and Shasha's approach. However, it does
this by storing and maintaining left separator values on every internal B-link tree node.

62 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

I S
I I
I I

2 30 2 30 -40

W2 2 1 30 -0, 2 2 30 -

Y nght..sep2 Z rigbLsep:30 Y rigbz.sep:30

ED] 8TU15TI119238 5

(a) Sample tree. (b) half merge Y and Z

2 30 2 0 40w x

2 2 30 - 2 3

yrigh-sep:30 Y right-.sep:0 9 rghsp3
...... ,,

[-21- [01181191 201231

(c) insei'ts aije deeis (d) Y is split

Figure 3.22: Problem with the stack.

Therefore, we can view the differences between our approach and Lanin and Shasha's as

a trade-off issue. Our algorithm optimizes the descent phase and the amount of work
required to find parents in the restructuring phases of update operations at the expense of

using extra memory and overhead required to maintain left separator values. The amount

of memory and overhead required in maintaining left separator values is minimal; the

extra work only occurs when restructuring above the leaf level takes place. In contrast,

the overhead required in Lanin and Shasha's method occurs in every update operation.

3.5. THE DELETE OPERATION 63

Complete-Merging the Parent

After complete-mergc(s,p, stack, I) calls find-parent to writelock the level I node that
covers s (line 1 in Figure 3.21). it checks for the special case where the right neighbor

of the node that covers s stores the downlink p (lines 2-4). For example, the half-merge

performed in Figure 3.22(b) would have forked a complete-merge where-t= 2 and p = Z.

1I4 covers s. and p is stored in X. If such a case is detected, complete-split calls the
procedure two.nod&crnergc. We present this procedure below.

completcrmerge then checks if s and p are already stored in the node (line 5). It then

performs some synchronization operations (lines 6-12). We ignore them for now, and
discuss them in Section 3.6. In that section, we also discuss the case where s and p are

not both already stored in the node. The procedure then deletes s and p from the node
(line 13). Since both s and p are stored in the node (checked in line 5), s is stored to
p's left (also checked in line 5). and s can't be the leftmost separator of the node (or
else the node won't cover s). we can safely conclude that the node has more than one
child. Thus. we need not merge it. We then call the the procedure old-root? to check if
the deletion causes the node to be the only node in its level (i.e., a leftmost node with
no right neighbor) and to have only one child (line 14-16). If that is the case, then it

is possible that the anchor's root-level field needs to be updated. Therefore, we fork an

update-root operation.

Complete-Merge with Two Nodes

two-nodecmerge(node, s,p, stack), shown in Figure 3.23, takes as arguments a node node
that has already been writelocked, a separator s, a downlink p and a stack stack. It
assumes s = right-sep(node) and stack is a stack of pointers to nodes whose tree levels
occur in consecutive increasing order starting at node.level + 1.

two-node-cmerge first writelocks node's right neighbor (line 1-2 in Figure 3.23). It
then checks if the neighbor's leftmost downlink points to the same node as p (line 3).
We already know s is the left. separator of the neighbor, because it is the right separator
of node. We then perform some synchronization operations (lines 4-10) that will be
explained in Section 3.6.

To delete both s from node and p from node's right sibling, we must make a decision

in our algorithm. Suppose that given node Y and its right neighbor Z. as shown in

Figure 3.24. we must perform a two-nodecmerge(Y s, p, stack). We can either (a) move
pl from V to Z, then delete s and p from Z, or (b) move p from Z to Y, then delete

64 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc two-node-cmerge (node, s, p, stack)
1 right-neighbor := node.rightlink
2 writelock(right-neighbor)

%check pointer equality. If not equal, then wait
3 if p != right-neighbor.p[l] 1l right-neighbor.size = 0 then
4 push(stack, node)
5 insert <s, p, stack> into node.merge-waiters
6 writeunlock(right -neighbor)
7 writeunlock(node)
8 return
9 end

% check if any waiting operations can be enabled
10 start wai ters(s, node.level)

c'c if szz(of ,iode is 1. then we have to half merge
11 if alnost-empty?(node) then
12 return merge-interior(node, right _neighbor, stack)
13 end

% else we have to shift a pointer to the right and change separator
% values between the two nodes.

14 rightLneighbor.p[ll := node.p[node.size]
15 node-size := node.size - 1
16 right-neighbor.s[0] := node.s[node.size]

% writeunlock the two nodes
17 new-s := right-sep(node)
18 level node.level
19 writeunlock(right -neighbor)
20 writeunlock(node)

% find proper parent and change separator
21 new-stack := stack-copy(stack)
22 complete -merge(old _s, right-neighbor, new-stack, level + 1)
23 complete-split(new-s, right-neighbor, stack, level + 1)
24 end two-node-cmerge

Figure 3.23: two-node-cmerge(node, s, p, stack) procedure.

s and p from Y. It turns out choice (b) is incorrect. If some ongoing process with key
argument k, where s < k < s2, visits parent X, it will decide Z is the next node to visit.
But Z no longer reaches k. Therefore, we must choose (a).

two-nodercmerge first checks if node has only one child (lines 11-13 in Figure 3.23). If
that is the case, then we must perform a half-merge operation on node and its neighbor.
(Shifting its only downlink to its neighbor would cause node to be empty.) ie procedure
merge-interior performs this operation; we discuss it below.

If node has more than one child. two-node-cmerge transfers node's rightmost downlink
to node s neighbor, and then deletes s and p, as shown in Figure 3.24(a). Specifically,
two-nodc-cmergc removes s and node s rightmost downlink from node by decrementing

3.5. THE DELETE OPERATION 65

(a) Correct.

Il I, k',, I Xl S I , l,

(b) Incorrect.

Figure 3,24: Implementation choice for two-node-cmerge.

node.sizc. replaces p in node's right neighbor with the node's former rightmost downlink,
and updates the left separator of node's neighbor (lines 14-16).

The approach we present for this special case of complete-merge is similar to the

approach taken by Lanin and Shasha [LS86]. They propose first merging the two nodes.

Then they remove the downlink and separator from the resulting node. If the node is
over-utilized, they split the node in two. The advantage of our approach is that we do not
merge any nodes, and we shift only one downlink from the left to the right node. Thus
we hold writelocks for a much shorter length of time (merging two nodes requires much

more work than swinging a downlink); we also do not needlessly delete nodes (which

saves memory).

two-node-cmerge has now completed the deletion of s and p. However, the deletion

decreased the separator between node and node's right neighbor. In Figure 3.24(a), the
separator has changed from s to sl. Note that because sl < s, the tree can still support

dictionary operations. Any dictionary operation that traverses the wrong node as the

66 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

xx
(a) start tree

x s2
I s,/z,,

(b) intermediate tree (c) final tree

Figure 3.25: Changing separator values.

result of the discrepancy between si (the actual separator between the two nodes) and
s (the stored separator in the parent) can redirect itself to the proper node by using
rightlinks. However. to maintain efficiency, s must be updated to sl in X. To do this,
two-nodccmerge(nodc. s, p. stack) performs two operations. The first is a complerenmergt
to remove the separator s and the downlink to node's right neighbor from the parent
(line 21-22 of Figure 3.23). The second is a complete-split to insert the separator s1 and
a downlink to node's right neighbor to the parent (line 23).' Note that in line 21, the
procedure stack-copy creates a new stack whose contents are the same pointers as stack's.
We need a separate copy since both operations will use stack's pointers.

The correctness of the above two operations should be obvious. Figure 3.25(a) shows
a parent X with downlinks to Y and Z after two-node-cmerge changes the separator
value between Y and Z from s to sl (where sl < s). Part (b) shows the state of the
parent X after the completion of the complete-merge. This tree structure can still support
dictionary operations. The final state of X after performing the completc-split is shown

5A more efficient implement ation would be to define a procedure that performed the tasks of the above
two operations, i.e., remove s and the downlink to s's right and re-insert the downlink with separator
sl. In the common case where s and sl are both covered by the parent, such a procedure would avoid
re-writelocking the parent when the downlink is re-inserted.

3.5. THE DELETE OPERATION 67

proc merge-interior(left-node, right-node, stack)
1 old-separator := joininterior(left-node, right-node)

'/ check if lefltnod zs now a old root
2 if oldroot?(left-node) then
3 fork update-root(left-node.level - 1)
4 end

7 unlock nodes
5 1 :- left-node.level + 1
6 writeunlock(right-node)
7 writeunlock(left -node)

' cornpleh._rnergc
8 complete.merge(old-seperator, right-node, stack, 1)
9 end mergeinterior

Figure 3.26: m erge-interior(left.nodc. right-node) procedure.

in part (c). The result is that X updates its separator s to sl.

Half-Merging Interio: Nodes

complete-merqe calls the procedure merge-interior(left node, right-node), shown in Fig-

ure 3.26. to half-merge interior nodes. It takes as arguments two interior neighbors. It
deletes the separator between the two nodes as well as the leftmost downlink in right-node,
and then merges the nodes. It assumes the two nodes to be merged are already write-

locked. merge-interior first calls the procedure join-interior to merge the contents of the

two nodes (line 1 in Figure 3.26).

join-interior(left-node, right-node), shown in Figure 3.27, merges neighbors left-node

and right-node and returns the old separator value between them. It first saves the
old separator (line 1 in Figure 3.27). Then it moves all the data from right-node to

leftLnode, except for the leftmost downlink and separator (lines 2-7), which are discarded.
joininterior then calls join-waiters which updates the merge-waiters and split-waiters

fields (line 8). We explain this operation in Section 3.6. After setting the rightlinks
properly (lines 9-10) and marking the right node as deleted (line 11), the old separator
value is returned (line 12).

After calling joininterior. mergetinterior checks if the merge has caused the tree
to shrink levels (lines 2-4). This may happen if left-node and right-node were leftmost
and rightmost nodes in their tree level, respectively, and each of them had only one
downlink. If this is the case. mergc-interior forks off the procedure update-root. Finally,

merge-interior releases its two locks, and invokes completc-merge.

68 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc join interior(left-node, right-node)
move data from rzght-nodt, to left-node

1 old-separator right-node.s[O]
2 left.node.size right -node.size
3 left-nodesl : right-node.sll
4 for i = 2 to right-node.size do
5 left-node.s[i] right-node.sfi]
6 left-node.p[i] right-node.p[i)
7 end

(7 concatenate water hsts
join_%waiters left -node, right.node)
/ set rightlhnks

9 left-node.rightlink right.node.rightlink
10 right.iJode.rirhtlink := left-node

'7 mark right-ncghbor as deleted
11 right-node.marked? := true
12 return old-separator
13 end join-interior

Figure 3.27: joininterior(leftnodt, right-nodc) procedure.

3.6 Coordinating Background Processes

Our discussion of the operations assumed that background complete-splits and com-

pletermerges can execute independently without synchronization. Sagiv [Sag86] points
out that the original Lehman-Yao algorithm can perform independent complete-split op-
erations without extra synchronization. However, the original Lehman-Yao algorithm

did not provide for two-phase merges.

The problem is that with two-phase merges, complete-merge and complete-split op-
erations must svnchronize with each other if their separator arguments are equal. A
complete-merge that deletes separator s and downlink p from a node must wait for the

complete-split that originally inserted separator s and downlink p. Complete-splits must

make sure the separator they are inserting does not already exist in the node.

3.6.1 Examples of the Problem

Consider the following example. where node X has a child Y. which is half-split into
Y and Z. by an insert. The separator between Y and Z is s. The half-split forks an
independent process to t-rform a complete-split that will add to parent X the separator
s and a downlink to Z. Later, a delctc half-merges V and Z, and marks Z as deleted.

The halfrmergc forks an independent process to perform a completc-merge operation that

3.6. COORDINATING BACKGROUND PROCESSES 69

zX-- -am l/ EZ --,-- 91-

(a) Y is split to Y and Z (b) Y and Z are merged

(c) Y is split to Y and Z' (d) inefficient structure

Figure 3.28: Synchronization example.

will remove the separator s and downlink to Z from X. If the complete-merge operation

is performed before the complete-split adds s and Z to X, there is a problem since
thf downlink and separator that the complete-merge tries to delete have not yet been
inserted. An similar example is where a complett-split tries to insert a separator and
downlink into a node. when the same separator value already exists. (This could happen
if a cornpletc-mergc operation that will remove the separator value has not yet, executed.)

A more complex example is shown in Figure 3.28. In (a), node Y has just been split
into Y and Z. Later in (b), separator s and Z's leftmost downlink are removed, and Y
and Z are merged. Even later in (c), a d wnlink is inserted in Y, causing it to be split

into Y arid Z', with separator , between Y' and Z'. The order in which we perform the
three background operations forked by the above is important.

If the comphctcsplit that inserts s and Z' occurs first. fol!owed by the complete-merge
that removes s and Z. we may have a problem. If the complete-mergc operation does not
check downlinks along with separator values, we may inadvortentlv delete Z' from the

tree. Later. the complctesplit that inserts s and Z may reach ' and insert s and Z into
X. resulting in the structure shown in (d). While this tree can still support dictionary

70 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

operations, it is obviously not the most efficient structure.

3.6.2 Solution

The obvious solution to the example shown in Figure 3.28 is to check both downlinks and

separators .already stored in the node before updating the node. This is done in line 2 in

the completc-split proced ire (Figure 3.11). lines 2 and 5 in complete-merge (Figure 3.21),

and line 3 in two_nod6_cmerq((Figure 3.23). The checks in complete-split check if a

separator value already exists in the node. If this is the case, then the complete-split

cannot continue. The checks in the completcrmergc procedures check if the separator to

be deleted exists in the node. and whether the downlink to the separator's right matches

the downlink to be deleted. If the check fails. then the complete-merge cannot continue.

Notice that we have not solved the problem entirely. A complete-merge or complete-split

operation that cannot continue must somehow restart at a later time.

One simple solution is to "'spin" if separator and downlink checks are not satisfied.

This would mean releasing all writelocks and recursively calling the same compleltesplit

or complete-merge procedure with the same arguments if the checks fail. Lanin and

Shasha [LS86] provide such a solution for their algorithm. Unfortunately, this is not
correct. This solution solves the problem posed by the first example above; the com-

plete-merge procedure will spin until the complete-split operation inserts the separator

and downlink it wants to delete. However, spinning will not solve the problem in the

example shown in Figure 3.28. If the first complete-split inserts into X the separator s

and the downlink to Z' to its immediate right, the complete-merge that tries to delete

s and Z will spin. because Z Z'. Since separator value s already appears in X, the

second complete-split that tries to insert s and Z will also spin. These two procedures
will spin as long as the separator s and downlink Z' stay in X. It is possible that these

two values will never be deleted from X. Thus the two procedures could spin forever. 6

Instead of spinwaiting, we provide two lists in every non-leaf n: n.split-waiters and

n.merge-waiters. When a complete-split or complete-merge fails its downlink or sepa-

rator check. it first inserts into the appropriate list (n.split-waiters for completesplits

and n.merge-waiters for complete-merges) enough information to restart itself, and then

releases its writelocks and terminates. The restart information consists of the separa-

6 Cases where the "spinwait" solution fails happen very rarely. Such a scenario requires a large number
of updates occurring in a short period of time causing nodes to be split, merged, and split again along
the sanif' separator value. For many applications, it may be adequaie to implement the spinwait solution
and treat occurrences of the above case as an error.

3.6. COORDINATING BACKGROUND PROCESSES 71

proc start-waiters (s, 1)
'7c check if any waztzng operations can be restarted

1 for each triple <sl, p, stack> in node.split-waiters do
2 if s = sl then
3 fork complete-split(sl, p, stack, 1)
4 remove <sl, p, stack> from node.split-waiters
5 end
6 end
7 for each triple <sl, p. stack> in node.merge-waiters do
8 if s = sl then
9 fork complete.merge(sl, p, stack, 1)

10 remove <sl. p. stack> from node.merge-waiters
11 end
12 end
13 end start-waiters

Figure 3.29: start-waiters(s, 1) procedure.

tor, downlink. and stack arguments of the complete-merge or complete-split. The list
insertions occur in lines 2-7 of the pseudocode for complete-split (Figure 3.11), lines 5-11
for completermerge (Figure 3.21), and lines 3-9 for two-node-cmerge (Figure 3.23). For
most applications, we expect the lengths of these lists to be small; insertions into these
lists require scenarios where large number of localized updates occur in a short period of
time, causing nodeb to split, merge, and split again along the same separator value. The
probability of such occurrences is small.

All incoming completc-splits and complete-merges must check the lists to find any
"waiting" operations that they can enable. They do this by calling the procedure
start-waiters, right after they make their downlink and separator checks. Figure 3.29
presents the pseudocode for start-waiters. This procedure forks off a complete-merge and
completesplit invocation for each element stored in the two lists whose separator value
is equal to the argument s.

Using the lists in the manner described above does not quite solve the problem of il-
lustrated bv the example shown in Figure 3.28. Instead of "spinning forever" (as in Lanin
and Shasha's algorithm), the two lists will contain elements that will never be removed.
While the algorithm is correct, the extra elements introduce unnecessary overhead. A
simple way to avoid this problem is to remove pairs elements in the lists that can "cancel
each other" (i.e.. an element on each of the lists whose values are identical) every time
an element is inserted into one of the lists.

Note that half-merg(and half-split operations must properly divide and merge these

lists. dividinterior does this by calling the function divide-waiters(node. new-node)

72 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

proc divide-waiters (node, new-node)
1 for each <s, p, stack> in node.split -waiters do
2 if s > node.sinode.size] then
3 transfer <s, p. stack> from node.split-waiters onto
4 new-node.split-waiters
5 end
6 end
7 for each <s. p, stack> in node.merge-waiters do
8 if s > node.s[node.size] then
9 transfer <s, p. stack> from node.merge-waiters onto

10 new.-node.merge-waiters
11 end
12 end
13 end divide-waiter

proc join-waiters(left-node. right-node)
1 append right .node.split-waiters onto left.node.split-waiters
2 append right -node.merge-waiters onto left-node. merge-waiters
3 end join-waiters

Figure 3.30: Functions that divide and join wait lists.

(line 9 of Figure 3.15): join-interior calls the function join-waiters(lefln ode. right-node)

(line 8 in Figure 3.27). Figure 3.30 displays both functions.

3.7 Parent Pointers

In this section. we present the concept of parent pointers, an idea proposed by Eric
Brewer. Each node is augmented with a pointer to its parent. or at least to a node to the

left of its parent. The addition of such pointers may significantly reduce the overhead
resulting from update operations.

Whenever an insert or delete operation performs its descent phase, a stack must

be maintained to record the last node visited at each level of the tree. For message-
passing architectures, stack operations may be quite expensive. The algorithm presented

by Lanin and Shasha requires even more overhead because estimations of left separator
values are pushed onto the stack as well. The stack is used only if the update operation
requires restructuring above the leaf level. (I.e., it is rarely used.)

If each node in the B-link tree maintains a pointer to its parent, then this generally

unnecessary overhead can be avoided. Rather than popping nodes from the stack (and in

the case of Lanin and Shasha's algorithm, popping estimations of left separator values),

3.8. SUMMARY 73

the restructuring phase of update operations will follow parent pointers.
Unfortunately. the adtition of such pointers requires extra maintenance. For example,

every time nodes are split or merged, parent pointers of the affected children must be
updated as well. However, this can be done in a lazy fashion by background processes in
an approach similar to the two-phase approach for merges and splits. We can view the

lazy update to parent pointers as a "third phase."

Consider the simple example in Figure 3.31. In part (a), we see an example tree
with parent pointers. Node X has become full and needs to be split. A half-split occurs

in (b). Note that the parent pointers of the children of both X and Y point to X.
This is acceptable since Y cani be reached from X through a rightlink. In (c), the
corresponding complete-split updates the parent of X. Finally in (d), the parent pointers
of the children of X and Y are lazily updated. The operations in (c) and (d) can be
performed concurrently. Merges can be handled in a similar approach.

The strategy in the example in Figure 3.31 guarantees an invariant in the B-link tree
structure, in which the actual parent of a node n can be reached through zero or more

rightlinks from the node pointed to by n's parent pointer. With minor modifications, we
can easily build a variation of the algorithm presented in this chapter that uses parent
pointers and maintains this invariant.7 We reserve this work for future studies.

3.8 Summary

In this chapter, we presented a concurrent B-link tree algorithm based on the Lehman-Yao
algorithm [LYS1j with modifications by Sagiv [Sag86 . The algorithm has the following
important properties:

" The descent phase of every dictionary operation locks only one node at a time.

" Process overtaking can cause descents to stray to the left of the proper path, but

rightlinks allow for redirection to the proper nodes.

* The restructuring phases for inserts and deletes use a two-phase strategy that
allows much of the restructuring to be completed in the background. The insert

restructuring phase locks one node at a time; the delete restructuring phase (based
on ideas by Lanin and Shasha [LS86]) locks at most two nodes concurrently.

"Without the invariant, parent pointers might direct restructuring phases to nodes that cannot reach
the actual parent. In such cases. we can use a strategy that either accesses the leftmost node in the level
or performs a descent from the root to find a node that can reach the parent.

74 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

some noe onod ode some rnode 0smenonde 0-

(a) Initial Tree 0

x

omnoe senoe smnoe some node soeoesm o

(c) Complete-split

x

some Znode some nod senode se node 0-

(d) Final tree

Figure 3.31: Parent pointers.

3.8. SUMMARY 75

* The anchor's root-level field is maintained by a critic process that is created on
demand and removed when its tasks are completed.

We finally show how B-link tree nodes can be augmented with parent pointers to
remove the overhead required in maintaining stacks during the descent phase of update

operations.

76 CHAPTER 3. THE COHERENT SHARED MEMORY ALGORITHM

Chapter 4

The Multi-Version Memory

Algorithm

This chapter describes another new concurrent B-tree algorithm. The algorithm is de-
signed to work well in large-scale parallel or distributed systems in which the number
of processors sharing the tree is large, or the communication delay between processors
(or between processors and global memory in a shared memory architecture) is large
compared to the speed of local computation.

In an application that uses a concurrent B-tree, replication schemes such as caching
are likely to be important tools for achieving high performance. For example, every
dictionary operation visits the root of the tree. The probability that an operation will
update the root is small. If no replication is used., resource contention for the system
component that stores the root will likely become the limiting factor in performance.

Replication improves performance in part by allowing processes to access data in local
memory, thus avoiding the delay involved in accessing a remote memory, and in part by
replicating data so that many processes can read it in parallel.

Most replication schemes guarantee the memory to be coherent, which constrains the
states of the replicated copies so that read and write operations appear to be atomic.
These constraints require significant synchronization between readers and writers, and
also require communication to update or invalidate copies after a processor has written
to memory. We call all such replication schemes coherent shared memory. Archibald and

Baer [AB86] present an analysis of a number of such schemes.
The basis of the B-tree algorithm we describe in this chapter is an abstraction that is

similar to coherent shared memory, but provides a weaker semantics; we call this abstrac-

tion multi-version memory [WW90]. Multi-version memory uses replication, providing

77

78 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

the advantages described above, but weakens the semantics of coherent shared memory
by allowing a process reading data to be given an old version of the data. For example,
if we are using hardware caches, a process may simply use its local cache's copy, even if

the copy has not yet recorded recent updates by other processes. While this semantics is
not as generally useful as that provided by coherent shared memory, it turns out to be
adequate for the B-tree algorithm presented in this chapter.

The advantage of the weaker semantics provided by multi-version memory is that it
can be implemented more efficiently than coherent shared memory. The implementations

of multi-version memory that we describe below have several important characteristics:

" They allow processes reading data to run in parallel with a process writing the

data.

* They eliminate "cache misses" resulting from invalidation caused by writes by other

processes.

" They eliminate the need for processes to wait for messages that update or invalidate

replicated copies.

The net result of these characteristics should be higher throughput and lower latency of

B-tree operations. For example, by allowing processes reading data to run in parallel with
a process writing the data, we eliminate the need for a descending process to block while
an update propagates up the tree. By allowing a process to use an old version of a B-tree
node in a replicated copy even after another process has updated the node, we avoid the
need to wait for communication required to bring the copy up to date. As presented in
Chapter 5, our experiments show that the performance improvement obtained by using
multi-version memory for non-leaf nodes is substantial in a large-scale system with many
processors, or in which communication is expensive.

If replication is provided by hardware caches, implementing multi-version memory
may require managing these caches in software. Others have proposed software cache
management as a way of tailoring the cache management algorithm to the needs of the
application [BMW85, SS88, CSB86, BCZ90]: however, they all provide coherent shared
memory (defined by either linearizability [HW90 or sequential consistency [Lam79]), and
optimize the implementation to take advantages of characteristics of the application. The
programmer still sees reads and writes as atomic operations.

Multi-version memory goes one step further; in addition to tailoring the cache man-
agement algorithm to the needs of the application, we also tailor the semantics of

79

the memory. This suggests that it could be fruitful to view cache management as an

application-level replication problem, where the user can specify as part of the applica-

tion both the semantics of the shared data and the algorithm used to manage caches.

Such an approach fits naturally into an object-oriented programming style based on in-
venting application-specific abstract data types, such as that advocated by Liskov and

Guttag [LG86]. A multi-version memory object is simply an instance of an abstract data

type, whose specification gives a different semantics to read and write operations than
does the specification of coherent shared memory. Also, the user can encapsulate com-

plex cache management algorithms in the implementations of the abstract data types,

and can change the management scheme depending on the access patterns of the appli-

cation. Cheriton [Che86] has made a similar suggestion, and has given examples of how
weak notions of consistency can be useful in distributed systems. Here. we apply the

general idea to parallel data structures.

We base the general mechanics of our new B-tree algorithm on the mechanics of

the coherent shared memory algorithm presented in the previous chapter. There have
not been many studies investigating the performance of concurrent B-tree algorithms

(e.g., [BS77, MR85, KW82]); however, the studies that have been done (based on both
simulations and analytical models) show that the Lehman-Yao algorithm, on which the

algorithm in Chapter 3 is based, should perform better than any other algorithm designed

to date [JS90. LSS8?7.

Instead of describing a single algorithm, we present our algorithm as a transformation
of any B-tree algorithm that uses coherent shared memory for all nodes and that satisfies
some additional assumptions. This allows our technique to be applied to different link

method algorithms. For example, recall the discussion in the previous chapter about

how Lehman-Yao based B-link tree algorithms can implement restructuring phases for

deletes. Sagiv [Sag86] proposes one method, Lanin and Shasha [LS86] propose another,

and we describe a third. Our transformation can be applied to any of these algorithms.

We structure the remainder of this chapter as follows. First, in Section 4.1, we give
a specification of multi-version memory, and discuss how it can be implemented. Then

in Section -1.2. we describe our transformation. In Section 4.3. we describe how the

transformation can be applied to the coherent shared memory algorithm presented in the

previous chapter. We conclude in Section 4.4 with a summary of the chapter.

80 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

4.1 Multi-Version Memory Schemes

In this section, we present multi-version memory replication schemes. We begin by

describing the operations provided by a multi-version memory object as seen by a client

of the abstraction. Then we present an implementation of multi-version memory that is

architecture-independent. We conclude with a discussion of how multi-version memory

can be implemented on existing architectures.

4.1.1 Specification

In a multi-version memory. the abstract state of an object consists of a sequence of

versions. plus an exclusive lock used to synchronize writers. The first version in the

sequence is the initial version. and the last version is the current version. Writers update

the object by extending the sequence of versions with new versions (thus changing the

current version). and readers read the object by choosing and reading some version. The

specification allows the reader to read any version, not just the current version (which

is what coherent shared memory would require). As discussed in the next section, this

nondeterminism allows us to implement a multi-version memory so that readers can run

in parallel with writers. Performance of applications that can use multi-version memory

will probably be better if readers obtain and read recent versions, but the specification

of a multi-version memory requires that the application be prepared for its readers to

obtain an arbitrary version.

As discussed in Chapter 2. a coherent shared memory provides operations to read

and write memory, as well as additional operations for synchronization (e.g., operations

on exclusive locks or read/write locks). Such synchronization operations are applied to
lock objects that are typically separate from shared data; the association between a lock

and the data it protects is typically just a program convention. An object should be

read only when its associated lock object is locked for reading, and written only when its

associated lock object is locked for writing.

A multi-version memory also provides operations that read and write memory, as

well as synchronization operations. However, the synchronization operations are more

closely coupled with the read and write operations than in a conventional shared memory.

A multi-version memory provides seven operations: read, write, readpin, readcurrent,

readunpin, writepin and writeunpin. (We use the term "pin" for reasons that should

become clear below: "pinning" is to a multi-version memory what "locking" is to a

coherent shared memory.) In specifying the operations. we view each as an atomic action"

4.1. MULTI- VERSION MEMORY SCHEMES 81

the implementation must guarantee that the apparent behavior is as if the operations

execute atomically in an order consistent with their real-time order. This property is

called linearizability [HW90].

A process reads an object by issuing a readpin or readcurrent operation. then issuing
some read operations, and finally issuing a rcadunpin operation. The readpin operation

has the effect of selecting an arbitrary version of the object; the readcurrent operation

always selects the current version. The readunpin operation simply informs the system
that the process is done with the version of the object selected by the previous readpin

or -eadcurrent operation; it is needed for performance, but has no observable effect on

the state of the object. A rad operation uses the version selected by the immediately

preceding readpin or readcurrent operation. A process can issue a read only if the process

has a version selected: a read is illegal if no version has been selected since the latest
readunpi7n.

A proccss writes an object by first issuing a writepin operation, then issuing some read

and writc. operations, and finally issuing a writeunpin operation. The writepin operation

has the effect of first obtaining an exclusive lock on the object (blocking if some other
process holds the lock), and then copying the current version of the object into a private
version local to the process. This copy is then treated as the process's selected version

during its subsequent read and write operations. The writeunpin operation updates the
object by appending he process's private version to the object's sequence of versions

(thus creating a new current version), and then releasing the lock. A process can issue a

wrile operation only if it has the object. pinned for writing.

The exclusive lock acquired by the writepin operation has the effect of sequencing
writers so that each write sees the effects of all previous writes. However, the lock has

no effect on a reader. As discussed in the next section., we can implement a multi-version

memory so that a reader can read an object while a writer has it pinned for writing.

Readers and writers still need some low-levei synchronization, but the delays involved
can be made quite short. In addition. the delays incurred by a reader do not depend on

how long a writer keeps an object pinned for writing.

As with ordinary shared memory. multi-version memory sequences the operations of
writers. Thus, as long as each writepin block preserves consistency (each "block" consist-

ing of the read and write operations between a writepin and the subsequent uriteunpin)

and the initial version is consistent, every version of the object is consistent. This means

that a reader sees a consistent state of an object each time it reads the object. However.

82 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

a reader can see an old version, and the specification allows it to be arbitrarily old.'

4.1.2 Implementations

A variety of MIMD architectures can implement multi-version memory, including shared
memory style machines and inessage-passing multiprocessors, as well as distributed svs-
tems. We describe one such implementation and some variations below in a way that is
reasonably independent .-f the particular architecture. We first explain how to represent
a multi-version memory object. and then we describe the implementation of each of the
operations.

Our implementation represents each multi-version memory object by a (single) base
copy that contains the current version of the object, a mutex to serialize write operations.
and some replicated copies. For example., if the multi-version memory is implemented
directly in the hardware caches of a shared memory architecture, the base copy resides
in shared meniory while tie replicated copies refer to the cached copies of the object.

Each replicated copy contains a flag that indicates whether the copy is pinned. The
implementation can discard an unpinned copy to free up space - some other use, or
replace it with a more current copy to improve the application's ierformance: however,
it cannot discard or replace a pinned copy. We assume that each of the processes, at a
given time. will use either zero or one replicated copies of the object. We also assume
that copying the contents the base copy to or from a replicated copy is an atomic

action.
An operation that reads or writes the object issued by a process uses a replicated

copy 'assigned- to the process. If the multi-version memory is implemented within
hardware caches. the assigned copy may refer to the process's cached copy. On the other
hand. a distributed system implementing multi-version memory in software may have a
fixed number of replicated copies of an object, so the system may randomly assign an
unpinned replicated copy to the process. A process reading data must first issue a readpin
or readcurrent on the data: a process writing data must issue a writepin on the data.

implementation then ensures that a process will always be assigned a replicoted copy

hen it issues a read or write operation.
A readpin operation first assigns an unpinned replicated copy to the process. This

'We could add additional constraints to the specification. For example, we might require read-pin
to choose a version that is no older than any other version already used by the process. Alternatively.
we could require it to choose one of the k most recent versions. The B-tree algorithm presented in this
chapter doe- not need such constraints, so we will not discuss them further.

4.1. MULTI-XERSION MEMORY SCHEMES 83

may require creating a new replicated copy and copying the base copy's contents into the

new copy (e.g., a multi-version memory is implemented in a hardware cache, and a process

does not have the shared object in its cache), or it may require blocking the process until

an unpinned copy becomes available (e.g., a multi-version memory is implemented in a

distributed system with a fixed number of replicated copies for each object, and all the

copies are pinned). It then marks the replicated copy as pinned. The readpin performs

the copy assignment and marking in one atomic step. A readcurrent operation is similar,

except that it ensures that the process's replicated copx is current (i.e.. is equal to the

base copy) by copying the base copy into the process's new copy, if necessary. (We discuss

below how to ensure that a replicated copy is current.) A readunpin operation simply

marks the process's copy as unpinned.

A writepin operation first acquires the mutex in the representation of the object. By

using the same protocol as for readpins, an unpinned replicated copy' of the object is

assigned to the pa-3ces,,. It ensures that the replicated copy is cu~rrent, and then marks

the copy as pinned:. Like the recdpin operation. a writepin performs the copy assignment

and marking in one atomic step.

There are several ways to ensure that a writer is assigned a current replicated copy

during a writepin operation. (The implementation for the readcurrent operation can use

similar techniques.) The simplest is just to copy the base copy into the writer s replicated

copy as part of the writepin operation. However, if the writer's copy is already current,

this approach incurs avoidable ov d. Athr approach .^ -....... with

each copy: the version number is incremented at each writeunpin operation, and can be

used to tell if a replicated copy is obsolete. However, this takes extra space. and there is

no theoretical bound on the number of bits needed for the version number. In addition,

the u'ritepin operation still needs to retrieve the version number of the base copy, which

could involve a significant communication cost. A third way is for all write operations

to "'invalidate" all replicated copies of the object. (For such schemes, we associate with

each replicated copy a valid flag.) That way, if a readcurrent or writepin is assigned a

replicated copy marked invalid, it knows it has to copy the contents of the base copy.

In one atomic step. a writeunpin operation copies the process's replicated cop, back

into the base copy.- marks the replicated copy as unpinned, and releases the mutex. (The

copy nerds to he done onlv if the process has modified the replicated copy since its last

issued U'ritep1i7 operatiol. I

2Al,:ru iivl\. ii.Ii "oWall ,r>ihl. ctiii-cju(rcw:ir protocol c<ii avolW cipying back C) to he base copy

ri tl ;iw a

84 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

Although the specification of multi-version memory allows the version selected by a

readpin to be arbitrarily old, the performance of many applications using multi-version

memory will likely be better if selected versions are as close to the current one as possible.

Thus it is desirable to have writeunpin operations propagate to all replicated copies the

changes made to the base copy. Notice that a writeunpin does not have to wait for this

propagation to finish in order to release the writer's mutex and complete. Instead, the

svstem can create a "background process" after the writeunpin finishes to broadcast the

base copy changes to all the replicated copies.

There are several ways to propagate changes to replicated copies. One way is to

invalidate the replicated copiet,. In a multi-version memory implemented on hardware

caches, we can simply remove the cached objects from the processes' caches. However.
we can only remove unpinned cached copies. (Otherwise a process performing a read

operation might not have an assigned copy anymore. If the base copy were then used to

create a new copy. the process might read two different versions of the object between

a single readpin operation and the subsequent readunpin operation.) We can satisfy

this constraint by associating an additional valid flag with each cached copy indicating

whether the copy is "current" or "obsolete." and invalidating a pinned cached copy by

marking it as obsolete. A readunpin eperation can then check whether the process's

cached copy is obsolete, and if so. remove it from the cache.

Alternatively, invalidation could simply mark all replicated copies as obsolete, regard-

less of whether the copy is pinned. A copy marked obsolete can be brought up to date at

some convenient time. but the processes using the copy need not be delayed while this

happens.

Instead of invalidating, we can also directly update an obsolete replicated copy, with

the base copy-. As with invalidations, an important constraint is that a replicated copy

can be updated only if it is not pinned. We satisfy this constraint by queueing update

requests for pinned copies, so that the next readunp1i or rcadpi 7 can update the replicated

copy with the new value. (In fact. we only need to queue the latest update request for

each copy.) Alternatively. an update request for a pinned copy- could mark the copy as

obsolete: the next readunpin could then copy the base copy into the replicated copy.

4.1.3 Multi-Version Memory and Existing Architectures

The impleiiie,,1t;, ions of a 11l1 i-versionI nICmorv obj 'c described above have , sveral key

charact (,ist ic>:

4.1. M ULTI- VERSION MEMORY SCHEMES 85

" By using an old version, a process reading the object can proceed while another

process is writing to the object.

* By allowing lazy propagation of an update from the base copy to replicated copies,
we spread over time the invalidation load for a heavily shared object; this should

result in a more even load on the network., and help avoid the kinds of saturation

problems discussed by Pfister and Norton [PN85].

" The only constraint on when to update a replicated copy is that the copy cannot be

pinned during the update. In particular, there are no requirements that a replicated
copy be updated by a certain time.3 Thus. one possible implementation allows
readers to avoid waiting whenever possible. For example, if a readpin operation

finds the process's replicated copy marked obsolete, it might make sense to use the

old copy if there would be a long delay in getting the base copy.

For applications that can use a multi-version memory, the above three characteristics

can significantly improve performance by increasing concurrency and throughput, and

decreasing latency.
Our description of the implementations above can be applied to both shared-memory

and message-passing architectures. On a shared-memory architecture, we might imple-

ment multi-version memory in hardware caches and create replicated copies dynamically
when needed. On a message-passing architecture, such as the J-machine [DCF+89]., we

might instead maintain in software a fixed number of copies on different processors. which
serve to spread out the load and reduce contention. (Daily's "distributed objects" [DC88]

or Chien's "concurrent aggregates" [CD90, Chi90] might be useful substrates for imple-
menting a multi-version memory on a message-passing machine.)

The software management approach can be implemented on existing architectures.

However. updating the replicated copies in software involves substantial overhead. Thus
supporting multi-version memory in the hardware level seems like an attractive alter-
native. Hardware support for fast block copy would be useful. Hardware caches also

provide fast associative lookup.

Using hardware caches has two further potential advantages. First, the dynamic

replication ma' adapt better to changes in load, since the number of copies that exists

'Afek. t al. describe a "lazy- cache algorithm that ensures sequential consistency [ABM89]; it, imposes
relatively weak constraints on propagation of updates from one cache to another, but still requires a
processor to wait at certain tlimes until updates have been propagated to other caches (or the input queues
at other caches). Multi-version memory imposes essentially no constraints; perhaps its implementation
should h,,I aled a "'lazier" cache algorithm.

L = • n num um Im nm mul In IN lm m m i m ln H n

86 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

depends on how many processes are actively using the object. Second, the use of local

cache memories may allow faster access, since in a software-based multi-version memory

implementation on a message-passing machine, a process desiring access to an object

must send a message to a processor holding a copy of the object.

However, the shared-memory approach also incurs some overhead in creating and

deleting copies dynamically. Furthermore, we know of no architectures that allow an

object to be "pinned" in a cache. Supporting this raises the obvious problem of whal

to do when the cache is full with pinned objects and something needs to be removed to

make room for another object; since in the B-tree algorithm described below, a process

never pins more than a small constant number of objects (at most two) at a time. one

reasonable choice might be to treat it as an error.

There are other potential problrns with supporting multi-version memory in hard

ware. A hardware cache typically imposes a fixed size on cached objects. Forcing the

programmer to break a large object into several small ones will not work., since there is

no way to guarantee that the versions of the different small objects read by a process are

consistent. Supporting variable-sized objects in hardware caches is difficult. A reasonable

compromise might be the approach taken in the VMP system (CSB86], which uses a large

cache page size. This might be adequate for many applications. (VMP handles cache

coherence in software, which at least gives the* potential of implementing multi-version

memory to take advantage of the fast block copy and associative access provided by the

hardware. but it is no, clear whether there is any way to cope with "pinning" objects.)

4.2 A General Transformation

In this section. we describe a general transformation for a wide class of dictionary algo-

rithms. The transformation takes a dictionary implementation that works with coherent

shared memory, and produces an implementation that uses multi-version memory for

some of the nodes in the representation of the dictionary. We begin by describing our

assumptions about the algorithm that uses coherent shared memory. Next, we describe

the transformation. We conclude with a proof of correctness.

4.2.1 Assumptions

We muducl iltl(dat a stiructur e' , 0 represent a dict iona rV as ail acvclic labeled graph

(where tile label, arc assigned to nodes). \Ve (distinll gisli son iiode> in the graph as haf

4.2. A GENERAL TRANSFORMATION 87

nodes: a node created as a leaf cannot be changed to a non-leaf, or vice-versa.
One node is distinguished as the anchor node; the identity of the anchor node never

changes. An edge directed out of a leaf node must be incident upon another leaf node;
we do not allow edges from leaf nodes to non-leaf nodes. The label on a node represents
the state of the node, including information about the keys stored "-t the node, the range
of keys associated with each edge leaving the node, and whether each edge leaving the

node points to a leaf node. We assume that all data is stored at the leaves, as in a B+-
tree [Com79j: non-leaf nodes contain redundant index information to help operations find

appropriate leaves.

We assume that several functions are used to implement the three dictionary opera-
tions. The functions and the assumptions we make about their behavior are specified as

follows:

" The function covers takes a node 71 and a key k. If i is a leaf, then covers returns
truc iff it is responsible for storing information that can be used to determine

whether k is in the dictionary. The subsets of the key space covered by the different

leaves form a partition of the key space. We do not make any assumptions about

the behavior of covers if n is not a leaf.

* The function successor takes a node n and a key k. If the label for n specifies
that the range of keys associated with an edge leaving n includes k, then successor
returns the node in. the node pointed to by the above edge. We do not make any
assumptions about the behavior of successor if no edge described above exists.

" The function reaches takes a node n and a key k, and returns true iff n's label indi-
cates that the leaf that covers k is reachable from n. We formally define reachable

as follows. Let the function successor', where i > 0, be defined as follows:

{ 2 i= 0,
successor1 successor - (n. k), k) otherwise.

Then. k is reachable from n. if for some finite integer j. successor'(n, k) is the leaf
that covers k. We assume that any key is reachable from the anchor.

* The function isi, takes a key and a leaf node that covers the key. and returns truf
iff the liode"s lael ind(icates that the leaf stores the key.

" The .,iu mcion ts-1haf takes a node ii and returns tri(iff ii is a leaf.

88 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

proc find.x (k)
I n := anchor

2 readlock (n)
3 while I isieaf (n) do
4 next-n := successor (n, k)
5 readunlock (n)
6 n := next-n
7 readlock (n)
8 end
9 readunlock (n)

10 xlock (n)
11 while I covers (ii, k) do
12 next.n := successor (n. k)
1)," xunlock (n)
14 n := nextn
15 xlock (n)
16 end
17 return (n)
18 end find-x

Figure 4.1: find-x procedure.

The function leaf-edge takes two nodes n and m. It assum -iere is an edge from
n to rn. It returns true iff n's label indicates that m is a leai.

We divide our assumptions about the coherent shared memory algorithm into two
parts: assumptions about its form, and assumptions about its behavior.

Assumptions about Form

We restrict our attention to implementations of a dictionary in which the operations are
implemented as follows. Each operation starts by calling a findX operation, which locks
and returns a leaf node that covers the specified key. There are two findx operations:

find-read and find-write. Lookup calls find-read, which locks the returned leaf in read
mode; insert and delete call find-write, which locks the returned leaf in write mode.
Figure 4.1 presents the implementation of the find-x operations.

Find-read's implementation replaces xlock(n) and xunlock(n) in findx's implemen-
tation with readlock(n) and readunlock(n). respectively: find-write replaces xlock(n) and
xunlock(n) with writelock(7 i) and writeunlock(n), respectively.

After calling the find x operation. the implementation of a dictionary operation ex-
ecutes its decisive step. which atomically either reads or updates the leaf I returned by
find-i. In its decisive step. a lookup operation uses the is-in function to determine th

4.2. A GENERAL TRANSFORMATION 89

result to be returned to its caller; an insert or delete operation changes I's label to reflect
the addition or removal of the specified key, and may also modify the state of the graph
in other ways (e.g.. by adding or removing nodes and changing edges).

After executing its decisive step, a lookup operation returns its result. The other
operations may perform more work before returning. We model this by allowing an
insert or dcletc operation to perform a sequence of atomic updates, each involving one
or more nodes. However, we view the insert or delete operation as completed as soon as
it releases the writelock to the leaf returned by its find-writc. Furthermore., subsequent
atomic steps modify only non-leaf nodes. (The atomic updates performed after the
operation's completion can be viewed as being performed by a "background process.")

We assume the dictionary uses read/write locks to ensure atomicity of the steps in the
implementations of the operations. The find-x operation, as shown above, uses readlocks
on non-leaf nodes. xlocks on leaf nodes. and locks only one node at a time. After executing
find-read, a lookup operation has a readlock on the returned leaf; it holds this lock until

the result of the operation has been determined. Similarly, after executing find-write, an
update operation has a write lock on the returned leaf: it holds this lock until it updates
the leaf. after which it may acquire other writelocks on both leaves and internal nodes
(e.g.. for propagating splits and merges through the graph). We assume that whenever
a process acquires more than one lock. it acquires and releases them in a nested fashion.

Assumptions about Behavior

The most basic assumption we make about the behavior of the coherent shared memory
algorithm is that it is correct, in the sense that the dictionary operations are linearizable.
We also make two additional assumptions about the find-x operations. First, we assume
that a find-r operation for key k, when started at a node that reaches k, will only visit
nodes that reach k. Second, we assume that a find-x operation for key k, if run with all
other processes halted. will lock and return the leaf that covers k.

We do not assume that the coherent shared memory algorithm guarantees that all
operations will terminate, since algorithms like the one presented in the previous chapter
cannot make such a guarantee. However. we will assume that it is non-blocking, in the
sense that as long as at least one operation is running, some operation will finish. Fur-

thermore, we assume that - finite number of insert or delete operations performing thcir
seque,'C(es of background atomic updates with all other processes blocked wih eventually

all complete.

90 CHAPTER 4. THE MULTI- VERSION MEMORY ALGORITHM

proc find-x (k)
1 n := anchor
2 readpin (n)
3 while isJeaf (n) do
4 if reaches (n, k) then
5 readunpin (n)
6 readcurrent (n)
7 end
8 next-n := successor (n, k)
9 if leaLedge (n, next.x) then

10 readunpin (n)
11 1! := next-n
12 xlock (n)
13 else
14 readunpin (n)
15 n := next-n
15 if n has already been visited then
16 readcurrent (i)
17 else
1b readpin (ii)
19 end
20 end
21 end
22 while ! covers (ii, k) do
23 next-n := successor (n, k)
24 xunlock (n)
25 n := next-n
26 xlock (n)
27 end
28 return (n)
29 end find.x

Figure 4.2: Transformed finda- procedure.

4.2.2 Transformation

Given a dictionary implementation that satisfies the assumptions described above, we

modify it to use multi-version memory for the non-leaf nodes, including the anchor.

Tile transformation requires two steps. First, we replace all occurrences of lock or unlock

operations on non-leaf nodes with the corresponding pin or unpin operations. Second. we

modify the coherent shared memory findzx implementation to incorporate multi-version

memory nodes.

Figure 4.2 presents the implementation of the transformed find-x operations. Since

the find-x operation can read an old version of a non-leaf node, it is possible for it, to

access a version of a node that does not reach the key it is trying to find. To handle

4.2. A GENERAL TRANSFORMATION 91

this., we modify the find-x operation for key k as follows: if it encounters a non-leaf

node that does not reach k, it does a readcurrent operation on the node (lines 4-6 in
Figure 4.2). In Section 4.2.3. we show that the version selected by readcurrent always

reaches k. For coherent shared memory algorithms that allow their find-x operation to
visit "deleted" nodes, it is possible for the transformed find-x procedure to traverse cycles

in the graph. Therefore, we issue a readcurrent to any node already visited (lines 15-17).

In Section 4.2.3, we show that this procedure will avoid cycles.

4.2.3 Proof of Correctness

In this section. we prove that the transformed algorithm is correct. We begin with some

definitions. Then we show that given a coherent shared memory dictionary algorithm that
satisfies the assumptions presented above, the multi-version memory algorithm resulting

from the above transformation is linearizable. We conclude by proving that the multi-

version memory is non-blockivg. in the sense that as long as at least one operation is

running. some operation will finish.

Definitions

A computation of the multi-version memory algorithm can be represented by a sequence

of steps, where each step is either:

* An invocation of a dictionary operation.

* A return from a dictionary operation,

e A read step for a node ii.

* A readcurren" step for a node n.

* A fail step.

e An update step involving a set of non-leaf nodes A'.

* A leaf step involving a set of leaves C.

Each step belo~igs to a particular instance of some dictionary operation. A read step
corresponds to the entire sequence of read operations between a readpin operation and

the next readunpin operation. A rfadcurrcnt step consists of the entire sequence of read

operations betweeri a r(adcalrre nl operation and the next rcadunpin operation. A fail

92 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

step occurs if a find-x operation attempts to execute successor(n, k) where n does not

reach k. (We will show that this never happens.) An update step corresponds to the

entire sequence of read and write operations in a nested collection of writepin blocks.

(Recall that a writepin block consisting of the reads and writes between a writepin and

the subsequent wrzteunpin.) A leaf step corresponds to the entire sequence of read and

write operations in a nested collection of readlock and writelock blocks.

A computation of the coherent shared memory algorithm can be represented by a

sequence of the same kinds of steps, except that readcurrent steps will not appear, and

the correspondence with the operations is based on lock and unlock operations instead

of pin and unpin.

We say a leaf step belonging to a particular dictionary operation instance is a decisive

step if it is the last leaf step belonging to the same dictionary operation instance. The

decisive step is the one that either changes the abstract state of the structure (the set of

dictionary values stored in the leaves) or determines the value to be returned by a lookup

operation. We define an effective step to be an update or decisive leaf step. Also. we

define an interface step to be an invocation of or return from a dictionary operation.

For the purpose of the proof, assume that when a fail step occurs in a findx operation,

the operation halts. This means that a dictionary operation whose findx fails will not

execute any decisive or update steps.

Linearizability

We show that the transformed algorithm guarantees linearizability by reduction to the

coherent shared memory algorithm. Since, by assumption, the coherent shared mem-I

ory algorithm guarantees linearizability of the dictionary operations, it follows from the

lemma below that the transformed algorithm also guarantees linearizability.

Lemma 4 1.1 If .M is a computation of the multi-version memory algorithm, then there

exzists a computation S of the coherent shared memory algorithm with the same sequence

of effective and interface steps.

Proof: We prove the claim by induction on the number of effective and interface
steps in 4. If the number is zero, the claim is immediate. Otherwise, let r, be the last,

effective or interface step in M., and let M' be the prefix of M that ends just before

T. By the induction hypothesis, there exists a computation S' of the coherent shared
memory algorithm with the same sequence of effective and interface steps as M'. We

obtain S from S' as follows. If 7, is an update step or an interface step, S is just S'r,.

4.2. A GENERAL TRANSFORMATION 93

Otherwise, 7r is a decisive leaf step for some key k. Let .F be the sequence of steps

executed by the find-x operation with argument k when started in the state after S',

with all the other processes halted. (The find-x operation is findread if the r belongs to

a lookup operation., and is find-write otherwise.) Then S is S'Tir.

It is clear that S as constructed above has the same sequence of effective and interface

steps as Al. We must show that it is a computation of the coherent shared memory

algorithm. The only difficult case is when r- is a decisive leaf step; we must show that

the findix operation in S arrives at the same leaf as the corresponding leaf in A. For

this, we use our assumptions about the behavior of find-x operations in the coherent

shared memory algorithm. In particular. the state of the leaves after S' is the same

as after .M' (by the induction hypothesis since M' and S' have the same sequence of

effective steps). W\hen the multi-version memory algorithm executes r. it has the leaf

that covers k locked. Thus. after Al' (and hence also after S'). the leaf that covers k is

same as the leaf read or written by -. By assumption then the find-x operation in the

coherent shared memory algorithm, if run with all other processes halted starting in the

state after S'. will lock and return the leaf that reaches k. Executing r, after S'.F will

then give the same result as executing 7r after Al. U

Liveness Properties

In this section, we prove that the transformed multi-version memory algorithm is non-

blocking, in the sense that if any operations are running at any point in time, some

operation will eventually complete.4 First. we show that the multi-version memory algo-

rithm does not allow find-x operations to fail (which, as mentioned earlier, would cause

operations to halt). Second, we show that if the coherent shared memory dictionary is

always acyclic and at least one operation is running, then some operation will complete

in finite time.

Lemma 4.2.2 A findrx operation for key k in the multi-version memory algorithm does

not fail.

Proof: Let k be the key in question for the find.x operation, and let M be a compu-

tation of the multi-version memory algorithm. We need to show that the version used by

V'e do not allow a process to halt while in the middle of an operation. In particular. if a process has a
node pinned in write mode and halts, then other processes that attempt to write-pin the node will block
forever. Thus, this is a weaker notion of "non-blocking" than used, for example, by Ilerlihy H[ter9O].

94 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

the successor operations in M always reach k. We do this as follows. A find-x operation

for key k executes a series of read and readcurrent steps Ri. If the version used in a read
step does not reach k, a readcurrent step is executed. For the purposes of the proof, we
consider such a read step and the subsequent readcurrent step as "sub-steps" of a single

step. We prove inductively that the version used by each step reaches k.

The basic step involves the first read step in the findzx operation, which reads the
anchor node. This i3 trivial, since by assumptions made in Section 4.2.1 and Lemma 4.2.1,
the anchor reaches any key.

For the inductive step, assume that R, reads a version A of node ni that reaches k,
and that the find-x operation next reads node ?z,+, (found to be the appropriate successor
of n, in step R,). If Rj+ reads a version of rli+i that reaches k. we are done. If not, the
.find-x operation then executes a readcurrcTit substep R,+1 for 7z+j. To show that the
find-x operation does not fail. it suffices to show that the version B of n2 +j read by R'+1

reaches k. By Lemma 4.2.1, there exists a computation S of the coherent shared memory
algorithm with the same sequence of effective and interface steps as M. We show that
S can be augmented with a find-x operation for k that reads version A of n, and then
version B of ni+1 . Recall that we assumed that the coherent sh,. -i memory algerithm
has the property that a find-x operation for k, if started at a node that reaches k, will
only visit nodes that reach k. it then follows that B reaches k.

We augment S with a find-z operation for k that starts at node ni, and reads ni
immediatelh after the update step UA that writes version A. We denote this read step

as RA. Since the multi-version memory algorithm and the coherent shared memory
algorithm use the same method for choosing successive nodes to visit in a find-x operation,
this find-x will read nij+ next. We simply delay this read step until immediately after
either the update step UB that writes version B, or the read step RA, whichever comes

later.

We must show that the read step for nj+ inserted into S reads version B. This is
trivial if the read step for nj+ is inserted into S immediately after UB. Otherwise, either
UB comes before UA, or UB = UA. If UB = UA, then RA immediately follows UB, and
the read step for n,+1 immediately follows RA. so the read step for n,+, reads version B
of n,+,. Otherwise, UB comes before UA. In this case. it suffices to show that no other
updath step for ni+1 occurs between UB and UA. But in M, Hi+1 occurs after R,; since

a read step in the multi-version memory algorithm can only read a version written by

a prior updatc step, R, occurs after UA. ttence. Ri+1 occurs after UA. Since R,'. reads
the current version of n,+,. there is no update step for n,+, between UB and R'+i. Since

4.2. A GENERAL TRANSFORMATION 95

R',, occurs after LA, there is no update step for n i+1 between UB and UA.

Therefore, the read step for n,+j inserted into S reads version B. By the assumptions

made about the coherent shared memory algorithm, version B of n,+, must reach k. 0

To show that the transformed multi-version memory algorithm is non-blocking, we

need to introduce two concepts: version graphs and computation states.

Recall that the dictionary implementation is a labeled graph. The version graph
of the dictionary implementation is a directed graph that contains a separate node for

each version of each node in the dictionary. An edge exists in the version graph from a

version V of a dictionary node m to all versions of the dictionary node n if V contains a
pointer to ii. Note that by removing from the version graph all but the current version

of each dictionary node, and all edge except those whose source and destination nodes

are cuirent versions we are left vith the dictionary implementation.

The computation state of a dictionary implementation describes not only the state of

the data structures used to represent the dictionary, but also the state of the processes

that are performing dictionary operations. To define the notion of a process state, we can

think of each process as performing a sequence of computation steps, which we defined
above. For example, a process performing a lookup operation must perform a finite

number of read steps, followed by a leaf step. The state of a process must describe not

only the sequence of computation steps the process has already performed, but also the

computation steps that the process will perform in the future. We represent a process's

state by a single *program counter." By convention, we set the value of a program

counter to the computation step that the process will perform next. The computation

state of a dictionary implementation consists of a version graph used to represent the

state of the data structures and a list of program counters used to represent the state of

the processes performing operations.

Lemma 4.2.3 Tht multi-version memory algorithm is non-blocking. (I.e., if at least

one incomplete operation is running, eventually some ope-ation will complete.)

Proof: Consider the computation state of the dictionary implementation. For now,

assume that the sequence of nodes visited by the read steps in a findr operation does

not traverse any cycles in a version graph that does not change over time. Given this, we

can show that if at least one incomplete operation is running, eventually some operation

will complete.

We divide the computation state of our multi-version dictionary implementation into

four cases:

96 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

1. The value of all the program counters in the computation state are set to read

steps.

2. At least one program counter is set to a leaf step.

3. At least one program counter is set to an update step, at least one program counter

is set to a read step, and no program counter is set to a leaf step.

4. At least one program counter is set to an updatt step and no program counter is
set to a read or leaf step.

Case (1) is straightforward. Since the graph has finitely many nodes, does not change
over time (since no program counters are set to decisive leaf or update steps), and we as-

sume find-x operations do not traverse cycles, then eventually one operation wil) Perform

a leaf step. Data contention arong read steps is not an issue since they all involve only
readpi7 arid readcurrent operations. Once an operation reaches a leaf., the computation

state has become that of case (2).

For case (2). at least one process, which we call a, has its program counter set to a leaf

step. This means that o has completed its read steps and will next perform a leaf step.
Let £ be the set of leaves affected by a's leaf step. According to our assumptions, the
edges connecting leaf nodes in the coherent shared memory algorithm's implementation

cannot form a cycle. By Lemma 4.2.1, the edges 'onnecting leaf nodes in the version

graph of our multi-version memory algorithm cannot form cycles either. Therefore, we
can order the leaves in our version graph by using a topological sort (where the first

node in the sort containing no edges leaving it). We prove by induction on the order in
which the leaves in £ appear in the topological sort that eventually some operation will

perform a decisive leaf step and complete. 11or the basic s~ep. assume C consists only of
the first leaf in the topological sort. If we assume that read/write locks are non-blocking

(and this is a reasonable assumption since the coherent shared memory algorithm is non-

blocking), then eventually some operation will perform a leaf step affecting the first leaf

in the topological sort. By Lemma 4.2.2 and the structure of the find-x operation, this
leaf step must also be decisive since the first leaf in the topological sort. does not have
an,, edges leaving it. For the inductive step, assume that £ contains li, the ith leaf in

the topological sorz. and no other leaf in £ appears before !, in the sort. Eventually some
process will peiform a leaf step that affects the j'th leaf in the sort, where j i. Either

the step is dtcisive and a dictionary operation completes, or the proc-ss finishes tile step

and is now ready to perform another leaf step. For the second case, the set of leaves that

4.2. A GENERAL TRANSFORMATION 97

the new step accesses includes a leaf that is at most the (j - 1)'th leaf in the topological
sort. This is because non-decisive leaf steps (which c-cur in the find-x operation) use

the function successor to determine the leaf node affected by the next leaf operation.
Since j - 1 < i, by induction, we conclude that eventually, some operation will perform
its decisive leaf step and complete.

Case (3) is similar to case (1). except that some program counters have been set to
update steps. We will prove by contradiction that after a bounded number of steps. the
computation state will become that of either case (1) or (2). Assume that a computation
state from case (3) will never become that of either case (1) or (2). Let P denote the

set of processes that the updal(program counters represent (i.e., T represents the set of
processes that will perform update steps). The only computation steps that can affect

the state of the version graph are decisive leaf and update steps. The only way a decisINz
leaf operation can be performed is if the computation state becomes that of case (2).

Also. the only way new processes can be added to T is if a process not in 7' performs
its decisirc lcaf step which means the computation state must become that of case (2).
Therefore. the only steps that can alter the state of the version graph are update steps.
and no new processes will perform update steps. Furthermore, the number of processes
in P cannot dwindle to zero. or else the computation state will become that of case (1).

This is where the contradiction appears. Since processes in ' perform update steps,
thev only issue writepins. Processes not in P perform read steps; they only issue readpins

and readcurrents. Thus there is no data contention between processes in T and not in 'P.
Also, processes not in P will not alter the state of the data structures representing the
dictionary. Therefore, the processes in P would behave the same regardless of whether the
processes not in P are running or blocked. In fact, if we assume that the processes not in P
are blocked, then the behavior of the processes in P is identical to the behavior of the same
processes running on the coherent shared memory algorithm: the only difference between
update steps in the multi-version memory and coherent shared memory algorithms is that

the multi-version memory algorithm uses writepins instead of writelocks. Since we assume
in the coherent shared memory algorithm that a finite number of processes performing
update steps with other processes blocked will eventually all complete. we can also assumc

that eventually the number of processes in P will dwindle to zero. Therefore, we have a
contradiction. We conclude that the computation state must eventually become that of
either case (1) or (2).

Case (4) is similar to casc (3). Either some new operations on the dictionary are
invoked and the computation state becomes that of case (1). or by using arguments

98 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

similar to case (3), eventually all processes nerforming update steps will complete (which

means that there are no more active processes performing dictionary operations).
The only thing left to prove is that find-z operations do not traverse cycles in a

fixed version graph. (Remember, this is the key assumption we used above for case (1).)
Recall that find-r. when accessing a node it already visited, uses readcurrent to read the

current version of the node. Let k be the key argument specified by an ongoing find-x

operation. If find-x does traverse cycles in the version graph, then the nodes in the cycle
in the version graph must refer to current versions of the dictionary. Here we have a

contradiction. Recall from Lenina 4.2.2 that all nodes visited by find-x operations must

reach k. and that the definition of the function reaches implies that findrx will reach the

leaf that covers k after a finite number of successor calls. Therefore, the cycle must not

exist. and the proof is completed. U

4.3 The Multi-Version Memory Algorithm

In this section, we build a multi-version memory algorithm by applying the transforma-
tion above to the algorithm we presented in the previous chapter. We first show that

the assumptions about form and behavior descibed in the previous section are valid for
the coherent shared memory algorithm presented in Chapter 3. We then present the

resulting multi-version memory algorithm.

4.3.1 Valid Assumptions

In this section, we show that the assumptions necessary for correctness in the transfor-
mation are. for the most part, valid for the algorithm presented in the previous chapter.

Discrepancies between the algorithm and the transformation assumptions can easily be
fixed. The data structure used to represent the dictionary can, in fact, be viewed as a

labeled graph, where each B-link tree node's state is encapsulated in its label. There
is only one anchor, and it never changes. All leaf nodes stay leaves; all non-leaves stay

non-leaves. All rightlinks from leaf nodes point to other leaves. (Leaves do not have

downlinks.) Data is stored only at the leaves. The functions covers?, successor, reaches?,

find-ky, and is-leaf? presented in Section 3.2 perform the same tasks as the functions

covers, successor., reaches, is-in, and is-leaf presented in Section 4.2.1.
The remaining assumptions are divided into assumptions about form and assumptions

about behavior.

4.3. THE MULTi-VERSION MEMORY ALGORITHM 99

Assumptions about Form

All three of the dictionary operations implemented in our coherent shared memory al-
gorithni fit the transformation's assumptions about form. We first examine the lookup

operation. then the update operations.

Lookups. The procedure ly-lookup, shown in Figure 3.5., calls lookup-descent. shown in
Figure 3.6. which corresponds to the find-read operation described above. After calling
lookup-desce n t. the procedure lylookup performs its decisive operation.

Updates. The procedures ly-insert and ly-delete, shown in Figures 3.7 and 3.1S. call
updatt-descent, shown in Figure 3.8. which corresponds to the findwu'rit operation. They
then complete their decisive operations. Except for lines 9-15 in procedure start-nodes
shown in Figure 3.13. resulting comu?.'tesplit and completc-merge operations are se-
quences of background atomic steps which only use writelocks. The above mentioned
lines in start_,odes acquire a readlock on the anchor. It is apparent that removing these
lines will still :esult in a correct B-tree algorithm. However, we show below that these
lines need not Le removed when the transformation to a multi-version memory algorithm

is applied.

Assumptions about Behavior

Our coherent shared memory algorithm also satisfies the transformation's assumptions
about behavior. Specifically, the following facts are true:

* Concurrent dictionary operations in our coherent shared memory algorithm are

linearizable.

* The find-z operation (descent phase) of all operations in our algorithm with the
key k as an argument will visit only nodes that reach k.

* A find-x operation for key k, if run with all other processes halted, will lock and
return the leaf that covers k.

* The algorithm is non-blocking.

* A finite number of insert and delete operations each performing a sequence of
background atomic updates with all other processes halted will eventually complete.

The proofs of these facts have becn sketched, but arc not included in the thesis due to

time and space constraints.

100 CHAPTER 4. THE MULTI-VERSION MEMORY ALGORITHM

4.3.2 The New Algorithm

The transformation of our coherent shared memory algorithm presented in the previ-

ous chapter to an algorithm that uses multi-version memory for its non-leaf nodes is

straightforward. We replicate the anchor and non-leaf nodes in the tree using multi-

version memory; we replicate the leaves using coherent shared memory. For most of

the pseudocode procedures presented in Chapter 3, the transformation simply requires

changing all lock and unlock commands for the anchor and non-leaf nodes to the appro-

priate multi-version memory pin and unpin commands. However, the transformations for

lookup-descent (Figures 3.6). update-descent (Figure 3.8). and start-nodes (Figure 3.13)

are more complicated.

Figure 4.3 presents the pseudocode for the transformed lookup-descent procedure. The

changes to the original coherent shared memory procedure are exactly the ones described

above in the transformation of the findxz procedure. The check that node reaches k in

lines 7-9 of Figure 4.3 is necessary, since readpins might select an old version that does

not yet reach k. Because rightlinks for marked nodes '-point left," lookup-descent must

avoid cycles by issuing a readcurrent to the next node visited a er visiting a marked

non-leaf node (lines 16-17). If the next node to visit is a cohere. shared memory leaf,

then lookup-descent issues a readlock instead of a readpin (lines 18-19). The changes for

the transformed update-descent procedure are similar to the transformed lookup-descent.

As explained above, lines 9-15 in the procedure start-nodes (Figure 3.13) are trouble-

some in that a readlock is acquired on the anchor. in our transformation, we assume the

atomic update steps that occur after an update operation's decisive step only use write-

locks. There are two ways to correct this problem. The first is to remove lines 9-15 from

start-nodes and apply the normai transformation to start-nodes (i.e., replace the tlritf-

lock and writeunlock operations with writepin and writeunpin operations). Although the

seven removed lines reduce the probability that the anchor is writelocked, they are not

necessary for correctness.

The second and more desirable way to solve the problem is to simply replace the

readlock and readunlock in lines 9-15 with readpin and readunpin. Because leftmost

nodes in our B-link tree are never deleted and no nodes are ever created to the left of

existing leftmost nodes. the leftmost node pointers stored in old versions of the anchor

are still valid (i.e., they still point to leftmost nodes of individual tree levels). Therefore.

replacing the readlock and readunlock in lines 9-15 with readpin and readunpin will

preserve correctness, since these lines only look up leftmost node pointers. (These lines

may read an old version of the anchor. If the version contains a leftmost node pointer for

4.3. THE MlULTI- VERSION MEMORY ALGORITHMI 101

proc lookup-descent (k)
%~c get roof of free

1 readpin(ANCHOR)
2 level ANCHORrootlevel

3 node AN CH OR. left most nodes[level]
4 read unpin (anchor)

7 descend down free to leaf ierci
5 readpin(node)

while isleaf?(node) do
7 c check zf nod(reaches k

7 if reaches?(node. k) then
6 read unpin (node)
'4 readcurrent(node)

F' else
11 next : successorinode, k)
12 miarked? : nodemarked?

13leaf'= nodelevel - 1 &L, downlink connects node and next
14 readunpin(node)

15 node :=next
0/(check if cycle might be traversed

16 if marked" then
17 readcurren t(node)
18 else if leaf? then
19 readlock(node)
20 else
21 readpin(node)
22 end

2 ", end
24 end

n/(ore along leaf level to proper leaf, using readlocks
2T) while !covers?(node, k) do
26 next :=node.rightlink
27 readunlock (node)
28 node := next
29 readlock(node)
30 end
31 return node
32 end lookup-descent

Figure 4.3: Transformed lookup-descent procedure.

102 CHAPTER 4. THE MULTI- VERSION MEMORY ALGORITHM

level 1, then the pointer indeed points to the leftmost node in level 1. If it doesn't contain

such a pointer, then lines 16-18 in start-nodes will writepin the anchoi and access the

pointer if it exists. or create one if it doesn't.)

The transformations for all the other pseudocode procedures in the previous chapter

require simply replacing all lock and unlock operations on the anchor and non-leaf nodes

with the appropriate pin and unpiz operations. The correctness of the new algorithm is

guaranteed by the correctness of the transformation.

4.4 Summary

In this chapter. we presented multi-version memory., a replication scheme which loosens
the semantics of coherent shared memory by allowing readers to access "old versions' of an

object. As a result. multi-version memory implementations allow more concurrency and

require less commun cation and synchronization than coherent shared memory schemes.
Although the weaker semantics is less generally useful than coherent shared memory. it is

sufficient to support a variety of B-link tree algorithms, including the algorithm presented

in the previous chapter.

We presented and proved the correctness of a transformation that takes a coher-

ent shared memory concurrent dictionary algorithm, and builds a multi-version memory
concurrent dictionary algorithm. The original algorithm must satisfy a small set of as-
sumptions. We showed that the algorithm presented in the previous chapter satisfies

these assumptions, and presented a transformed multi-version memory algorithm. The

correctness of the new algorithm is guaranteed by the correctness of the transformation.

Chapter 5

Performance Measurements

In this chapter, we present a series of experiments that we performed using a message-

driven simulator for large scale message-passing architectures. The experiments have two
purpo.eo. The primary purpose is to examine the performance of various concurrent B-

tree algorithms, including our multi-version memory algorithm presented in the previous
chapter. The secondary purpose is to compare the performance and scaling properties of

multi-version memory with coherent shared memory.

Any performance experiment for large-scale parallel applications must address certain
key issues. Data contention is perhaps the most obvious issue to consider, especially for

concurrent B-tree algorithms. The most critical example of data contention in the B-tree

is the root bottleneck, which occurs during any update of the tree's anchor or root node;
the root bottleneck blocks all incoming operations. The methods used to reduce the

root bottleneck are the main differences between the algorithms. Unfortunately, much of

the work in analyzing concurrent B-tree algorithms concentrate on data contention and

ignore other important issues [BS77, E1180, LS86, LSS87].

For example, since a concurrent B-tree heavily utilizes certain key data structures
(e.g., the anchor and the root), resource contention could be a limiting factor in through-

put. Also. as concurrent and distributed systems become larger, communication networks

become more complicated. If network latency becomes excessive, B-tree algorithms must

minimize communication to preserve performance. Replicating objects in memory can

reduce both resource contention and communication.

We implemented our B-tree algorithms using Andrew Chien's Concurrent Aggregates

(CA) language [CD90. Chi90]. CA is an object-oriented language designed to support
niassivly parallel programs for fine-grained message-passing architectures. CA's aggre-

gates are especially useful for implementing data abstractions for replicated objects. We

103

104 CHAPTER 5. PERFORMANCE MEASUREMENTS

used Chien's simulator for message-passing architectures to measure the performance of

our algorithms. This simulator provides a simple approach for modeling network latency

and resource contention.

The number of proposed concurrent B-tree algorithms precluded implementing every

algorithm; it became necessary to pick a handful of algorithms. In Section 5.1, we

present the algorithms we chose to implement along with the reasons for choosing them.

Section 5.2 describes the simulator we used to measure the performance of the algorithms.

Section 5.3 presents the simulation results.

5.1 B-Tree Algorithms

The algorithms we chose to implement needed to be representative of all proposed coii-

current B-tree algorithms. We implemented the coherent shared memory algorithm pre-

sented in Chapter 3. since there is good reason to believe its performance is better than

any other coherent shared memory algorithm proposed. WA:e also implemented the multi-

version memory algorithm presented in Chapter 4, since its performance and scaling

properties are likely to be even better than its coherent shared memory counterpart. For

the remainder of this chapter. we refer to the aloorithms presented in Chapters 3 and 4

as "our coherent shared memory algorithm" and "our multi-version memory algorithm"

respectively. Both algorithms are link algorithms. For purposes of comparison, we also

implemented some lock coupling algorithms.

As discussed in Chapter 2, there are two types of lock coupling algorithms, top-

down and bottom-up. Top-down algorithms perform their restructuring phases during

pessimistic descents. while bottom-up algorithms perform their restructuring phases after

decisive operations. We implemented two lock coupling algorithms. The Mond-Raz

algorithm (MR8.5] is a top-down algorithm; the Bayer-Schkolnick algorithm [BS77] is

bottom-up.

Since merge-at-empty strategies are more suited for database applications than merge-

at-half strategies [JS89], our implemented algorithms used a merge-at-empty strategy.

Since optimistic lock coupling strategies generally show better performance than pes-

simistic lock coupling strategies [BS77, LS86, JS90], we implemented optimistic descents

for both lock coupling algorithms. Because of the improvements in performance measured

by Lanin and Shasha [LSS87]. both lock coupling algorithms also used quick splits, which

writelock leaves and parents of leaves during optimistic descents for update operations.

To summarize. we implemented the following four concurrent B-tree algorithms:

5.2. THE IMPLEMENTATION AND THE SIMULATOR 105

* Our multi-version memory algorithm, which was presented in Chapter 4.

* Our coherent shared memory algorithm, which was presented in Chapter 3.

* Optimistic Mond-Raz algorithm [MR85] with coherent shared memory and quick

-splits.

* Optimistic Baver-Schkolnick algorithm [BS771 with coherent shared memory and
quick splits.

5.2 The Implementation and the Simulator

We implemented our B-tree algorithms using the Concurrent Aggregates (CA,) language.

developed by Chien [CD90. Chi90]. CA is an object-oriented language designed for fine-

grained message-passing machines. CA provides many features useful for implementing

different replication schemes and modeling resource contention. A message-driven simu-

lator for message-passing architectures. designed by Chien, measures the performance of

CA programs. This section discusses how CA and the simulator model some issues that

are important in concurrent B-tree performance. These issues include replication, data

contention. resource contention, and network latency.

5.2.1 Replication and Data Contention

Since the simulator models message-passing architectures, we represent a replicated ob-
ject as a fixed number of copies maintained in separate processors, which serve to spread

load and reduce conlcntion. CA provides a multiple-access data abstraction tool called

aggregates that can implement replicated memory. Aggregates allow users to build a

collection of homogeneous objects whose internal communication and synchronization

are user-defined. By using aggregates, we can build elegant implementations for both

coherent shared memory and multi-version memory. Since CA provides spinlocks, we

can also implement various synchronization objects such as read/write locks and multi-

version memory pins. We discuss the CA implementations of coherent shared memory

and multi-version memory in more detail below.

Coherent Shared Memory

After experimenting with a variety of cache coherence protocols [AB86]., we decided to

implement a simple directory-based invalidation scheme. This scheme was the most

106 CHAPTER 5. PERFORMANCE MEASUREMENTS

efficient to implement in CA and. after preliminary measurements, judged to provide

the best performance for the three coherent shared memory B-tree algorithms. 'lo pro-

vide concurrency control. we implemented read/write locks using a distributed lock ap-

proach [BurS5, ST.. Such locks allow more efficient implementations for readlock

than the monitor approach [Hoa74, Bri75, Dij71]. Iowever, the cynchronizaticn neces-

sary for writelocks grows proportionally to the number of replicated copies of the object

associated with the lock.

Multi-Version Memory

We implemiented multi-version memory using the approach described in Section .1.1.2.

Our implementation uses version numbers to check if replicated copies are current. It also

updates obsolete copies by directly copying the contents of the base copy onto replicated

copie-. After ex rer1irniCt i ne with a variet y of implementations. we found this scheme to

be most efficient for lhe C:\-implerened multi-version menory B-tree algorithn.

Replication Factor

We represent the anchor and each node in the B-tree as a replicated object. Since some

nodes are more heavily utilized than others. the number of copies maintained for each

node should vary. Nodes accessed more often (nodes in the upper levels) should have

more replicated copies. \\e used a scheme with the following number of copies for each

structure:

* Leaves (generally the least frequently visited nodes) are unreplicated.

" The number of copies of the anchor is equal to the number of processes that access

the B-tree.

" The number of copies of an internal node of level I is equal to the minimum of the

number of copies of the anchor, and the number of copies of an internal node of

level I - 1 times a user-defined constant. which we call the rcplication faictor.

It is reasonable to set the rcplication factor to the expected number of children for internal

nodes. since then the total number of copies for all the nodes in each level will be about

thc samc. Lan;-, and Shasha [LSS87] predict, this number to be 0.69 times the maximum

fanout of the tree.

5.3. '..MULATION RESULT5 107

5.2.2 Other Issues

Other issues that need to be addressed when implementing concurrent B-tree algorithms

art resource cont(ntl ion ind Inetwork latencY. CA and Ciien s simulator can model both.

Resource Contention

esi iulate resource contention by setting objects in our CA code to process only one
niessain, at a t ine. This means that a replicated object with 71 copies can process only 71

requests concurrently, even if we discount data contention. When more than v requests

ar' isue(i. ti,. exess, re u(est> "'spinwait u ultit a cop'. i: freed. If t lie spillnIi C. Cotttih -
ue,- past a user-defined amount of time. we queue the messages to alleviate saturation

I)rllo)iems described hv [AndS9.

Network Latency

The simulator allows the user to specify the average network latency of the modeled

architecture. It assigns to each message sent by the ('A program a cost equal to this

latency. The simulator does not model network contention or -hot spots." The default

value of this parameter is one simulated "time step." A time step is a time unit based

oit the modeled architecture: the simulator assigns basic operations (such as arithmetic

operations. loca! memory accesse,,,. etc.) a cost of one time step. By increasing the

sinulated network latency, we can approximate the effects that large networks can have

oii (uitlcurretIl B-tret alvurithlnts.

5.3 Simulation Results

We measured the performance of the four implemented algorithms using Chien's sim-

ulator. Since most B-tree applications are database-related, we investigated operation

patterns where the dictionary grows slowly (a cornmon characteristic in databases). We

used both randonly selected and fixed operation patterns as well as uniformly and non-

uniformly distributed keys as arguments to dictionary operations.

\\N divide the experiments into three categories. The first category contains the
aorit of tle experitilents' it investigates how different operation mixe, affect the

l)crformance(of the four algorithrns. The second category compares how the coherent
sliare ' menwinrv anid multi-vcrsion m emorv replication schenes perform for systems with

108 CHAPTER 5. PERFORM AN C' MEAS UREMENTS

large network latencies. The final category investigates how different replication factors

affect the performance of coherent shared memory and multi-version memory.

In each of the experiments, we first constructed a B-tree with 1000 dictionary elenent>-

and randomly selected k'vys. inh'.s> othtcwise specified. the maximum fanout of the tre,

was 10: the initial trees contained 4 levels. (Memory constraints in the simulator pre-

vented building larger trees.) For most experiments, the replication factor was 0.69 times

the tree's maximum fanout. rounded to the nearest integer. Unless otherwise specified.

we set the network iatencv to the default value: every (A messame wa-s assigied a latent

cost of one simulated time step. We then performed 10000 dictionary operations divided

amin! ;, nII iih r of lh-tr t u',or k(7'. Eacli B- trec 'vorkvk I- ia p ,ces> that sequeriljall'

performs dictionary operations (i.e.. it waits for an operation to complete and reiurn.

Oeiore start iin tiie next, operationi. \e measured the overall throughput (ileasle'l ii,

dictionary operations per simulated time stepsl during the 10000 operations as a functiol

of tie numuer of B-tree worker,. t'Lacih data point showin below is the average- throu,,olhpu

of thre, separate trials. The naxiumm number of B-tree workers was constrained Iv the

memory requirements of the simulator: generally, the maximum number was SO-10.

5.3.1 Operation Mixes

In Ihis section. we present the results of experiments that investigate how different opt!*

ation mixes affect the four concurrent. B-tree algorithms. We divide the experiments as

follows:

* Experiments with randon. q)peration patterns and uniformly distributed keys a>-

araument s.

* Lxpcriiiients with random operation patterns and non-uniformly distributed keys

as arguments.

* Experiments with fixed operation patterns.

Random Operations and Keys

For experiments with random operations and keys, each 1-tree worker randomly selects

the type of operation (insert, delcth. or looktp) to run and the key value used as al

argument. Each individual experiment fixes the probability of which operation the worker

will select e.g.. 45/ lookups. 30, inserts. 25% dehtcc,). We measure throughput of

dictionary operations as a function of the number of B-tree workers.

5.3. SIMULATION RESULTS 109

300-................ t

E 200

C-

00

- 0,.,. ,.!...... .

0

0 20 40 60 80 100

B-tree Workers

Figure 5.1: Throughput vs. B-tree workers. 100% lookups.

All Lookups. Figure 5.1 presents the performance of the four B-tree algorithms with
only lookup operations. For all four algorithms, throughput behaves linearly with respect
to the number of workers.

The performances of the four algorithms differ by c(nstant factors; the two lock cou-
pling algorithms perform better than our algorithms. The discrepancy is due to small
differences in the implementation of the algorithms. The simulator assigns to each mes-
sage sent by a CA program an average network latency cost. Thus CA implementations
that send more messages during their descent phases will have lower throughput for a
fixed number of B-tree workers. For example, the link algorithms check if the right sep-
arator of a visited node is greater than the key argument. The implementations of both
algorithms in CA require extra messages for this check. By minimizing the number of
messages, we can expect the performance of all four algorithms to improve by constant
factors. Because the simulator is very sensitive to the number of CA messages in our
implementations, we should not compare the raw performance numbers for the four al-
gorithms. Instead, we should concentrate on the general shape of the throughput vs.
number of B-tree workers curves, which indicates the general scaling properties of each

algorithm.

Various Operation Mixes. Figure 5.2 presents the performance of the four algorithms
with a small percentage of update operations. There is an 85% chance that each op-

110 CHAPTER 5. PERFORMANCE MEASUREMENTS

CWZ

- 100.

- -- - - --

..

0 20 40 60 so 100

B-tree Workers

Figure 5.2: Throughput vs. B-tree workers. 85/c lookups, 10% inserts, and 5% deletes.

300-

Iour m~rm
2 Iour csm--

100

0.

0 20 40 50 80 100

B-tree Workers

Figure 5.3: Throughput vs. B-tree workers. 45 17 lookups, 30% inserts, and 25% deletes.

5.3. SIMULATION RESULTS 111

3 00

E

1 0 0

100

0="".. 2 . "

0 20 40 60 80 100

B-tree Workers

Figure 5.4: Throughput vs. B-tree workers, 5% lookups. 50% inserts, and 45% deletes.

eration is a lookup, 10% chance that it is an insert, and 5% chance that it is a delete.
Figures 5.3 and 5.4 present performance measurements of experiments with even more

update operations.

For all of the algorithms, throughput decreases as the percentage of updates increases.
In all three experiments, the multi-version memory algorithm significantly outperforms
the three coherent shared memory algorithms, especially for large numbers of workers.

As discussed in Chapter 4, the multi-version memory algorithm should scale much bet-
ter than coherent shared memory algorithms. Multi-version memory readers can access
nodes concurrently with a writer. Data contention in the multi-version memory algorithm
occurs only in the leaves (which use coherent shared memory) and when background com-
plete-split and complete-merge operations update the same node, which is rare. Also, as
the number of replicated copies of the anchor and upper-level nodes grows, the synchro-

nization and communication needed between individual copies in multi-version memory
remains relatively constant; in coherent shared memory. they grow to intolerable levels.
In fact, performance starts to decrease for the coherent shared memory algorithms. The

multi-version memory algorithm's performance does not exhibit such characteristics, but
presumably would eventually if the number of B-tree workers were increased beyond 100.

Unfortunately, constraints in the simulator restrict the experiments to model at most

80-100 workers.

112 CHAPTER 5. PERFORMANCE MEASUREMENTS

Our experiments also show that our coherent shared memory algorithm performs
significantly better than the lock coupling algorithms when the operation mix includes
updates. This agrees with results from similar experiments by others [LS86, LSS87, JS90]
that compare lock coupling algorithms with Lehman-Yao based coherent shared memory
algorithms. Fewer writelocks, background restructuring (which lowers latency) and the
elimination of lock coupling all contribute to the performance advantages of Lehman-Yao

based link algorithms.

Other studies [LS86, LSS87, MR85] have found the Mond-Raz algorithm to perform
much better than the Bayer-Schkolnick algorithm. Our experiments show that the per-
formance and scaling properties of the two algorithms are very similar, and in some cases.
almost indistinguishable. We explain this discrepancy in two ways.

First. unlike some of the other studies [LS86, MR85]. we use the quick split option
in both algorithms. Therefore, the chances that update operations require pessimistic

descents are very slight. Since the pessimistic descents are the only differences between
the two algorithms, we expect the differences in performance of the two algorithms to be

less than the other studies.

Second, the simulator models message-passing architectures here communication
between processors is relatively expensive; the simulator assigns a fixed cost to every
message sent by the CA program. The fastest configurable network in the simulator still
requires one simulated time step for messages to travel from sender to receiver. The top-
down restructuring techniques of the Mond-Raz algorithm require more communication
between B-tree nodes than the bottom-up Bayer-Schkolnick. Therefore, the Mond-Raz
pessimistic descents are slower than the Bayer-Schkolnick pessimistic descents, and in
some cases, cause writelocks on upper-level nodes to be held longer. Therefore, the

Mond-Raz algorithm performs poorly. This phenomenon is an example of how underlying
assumptions of the system architecture and network latency can significantly affect B-tree

performance.

Various Maximum Fanouts. Figures 5.5 and 5.6 present performance measurements
for trees with maximum fanouts of 6 and 14, respectively. The operation mix is 45%
lookups, 30% inserts, and 25%, deletes. Both experiments show lower throughput than

the tree with the same instruction mix and a maximum fanout of 10 (Figure 5.3).

Having a low maximum fanout increases the number of leaves in the tree. which
increases the potential concurrency in the tree. However, it also increases latency for
descents and the amount of work for restructuring phases (which increases data con-
tention). The curves in Figures 5.5. 5.3. and 5.6 illustrate the performance trade-off. If

5.3. SIMULATION RESULTS 113

300

~ourmvm-M
1 owcsM --.

E

10

0 20 40 60 g0 100

B-tree Workers

Figure 5.5: Throughput vs. B-tree workers for maximum fanout of 6.

300

oufcsM--

E

-100

0

0 20 40 60 80 100

B-tree Workers

Figure 5.6: Throughput vs. B-tree workers for maximum fanout of 14.

114 CHAPTER 5. PERFORMANCE MEASUREMENTS

4 0 :i !............

our mvm
Cr Otffc -S

S3 cSM-MR

20CM-B _ ..

€ 30 I

- 20 "

....................

0

0 20 40 60 80

B-tree Workers

Figure 5.7: Throughput vs. B-tree workers. Incrementing localized keys.

the choice of maximum fanout produces either a "short, fat tree" or a "tall, thin tree,"

performance will suffer for each of the algorithms.

Localized Keys

For these experiments, we allow the B-tree workers to choose operations randomly as

before, but select the key arguments non-uniformly. Each worker maintains a variable

whose value is a key. Approximately half the time, the workers choose the keys randomly.

For the other half, they set the key argument to the variable value and increment (or

decrement) the variable. By localizing the initial values of the variables, we can increase

contention among concurrent B-tree operations.

Figure 5.7 and 5.8 shows the performance measurements taken when the variable is
incremented and decremented, respectively. Both increased data and resource contention

caused by the highly localized key selection contribute to significantly lower throughput

than in previous experiments. Performance for all the algorithms starts to degrade much

earlier than in previous experiments. In fact, Figure 5.7 shows almost no measurable

speedup for any of the four algorithms. In both experiments, our coherent shared memory

algorithm performs significantly better than the lock coupling algorithms, and the multi-
version memory algorithm performs significantly better than an) of the coherent shared

memory algorithms.

5.3. SIMULATION RESULTS 115

40 i.......................................L .
our mvm

C. c n . .
.csm-B5

:3 0

E

20

10

20 40 60 80

B-n-ee Workers

Figure 5.S: Throughput vs. B-tree workers. Decrementing localized keys.

Our two algorithms perform significantly better in Figure 5.8 than in Figure 5.7. This

is because when a node is split, the right half is shifted to the newly created node, and

the left half stays in the same node. Process overtaking sometimes forces our algorithms'

descents to visit nodes to the left of the proper path. Descents for our two algorithms

traverse fewer rightlinks as a result of process overtaking when workers decrement their

variables than when they increment their variables. Therefore, decrementing the variables

results in higher throughput than incrementing the variables.

Priority Queue

The previous experiments allow the B-tree workers to choose their operations randomly.

However, in some B-tree applications, the operation pattern of processes accessing the

tree is consistent and predictable. One such application is the concurrent priority queue.

The priority queue is a dynamic set of dictionary elements that supports the oper-

ations insert and extract-min (among others). The extract-min operation returns and

deletes the item in the set with the smallest key value. A large variety of parallel algo-

rithms use priority queues. e.g.. multiprocessor scheduling and parallel best-first search

of state-space graphs [Win84, NilS0., Pea84, KRR88]. Concurrent priority queues support

concurrent, operations: some implementations allow the extract-min operation to extract

116 CHAPTER 5. PERFORMANCE MEASUREMENTS

not just the element with the minimum key, but also an element with a "small" key.'

Implementing a priority queue in a Lehman-Yao type B-link tree is straightforward.

Since the anchor stores pointers to leftmost nodes, an extract-min operation can trivially

find the leftmost leaf (and thus return and delete the element with the smallest key)
without a descent. For most applications using a concurrent priority queue, the processes

accessing the queue exhibit a fairly consistent pattern. After an eztract-min. a process
performs several other operations (such as inserts) whose key arguments are localized

around the extracted key. Then it performs another extract-min, and so on.
We implemented the extract-min operation on both of our ,1gorithms. We did not

use the two lock coupling algorithms because, unlike in our algorithms, implementing

extract-min would have required a descent phase to reach the leftmost leaf. (Maintaining

in the anchor a pointer to the leftmost leaf is difficult to implement, especially -..hen the

leftmost leaf is deleted.) Therefore comparing the performance of our link algorithms
with tht lock coupling algorithms would not be fair.

We designed our experiment as follows. After building an initial tree of 1000 keys

with a maximum fanout of 10, the B-tree workers perform 10000 total operations. Each

B-tree worker performs an extract-min followed by five inserts. The key arguments to
the inserts are randomly chosen from a range of values localized around the extracted

key. Afterwards, another extractmin is perforned, and the pattern repeats. We measure
throughput as a function of the number of B-tree workers.

Figure 5.9 presents the results of the experiment. Because all extract-min operations

and many localized insert operations must access the unreplicated leftmost leaf, satura-
tion problems caused by resource contention are sharper than in any previous experiment,

especially for data points with large numbers of B-tree workers. The performance of the

multi-version memory algorithm is still significantly better than the coherent shared mem-

ory algorithm, since multi-version memory allows more concurrency for insert descents
and restructuring operations.

Summary

In this section, we presented performance measurements for the four B-tree algorithms
for a variety of operation patterns and key selection schemes. We discovered that our co-

herent shared memory algorithm performed better than the two lock coupling algorithms,
and that our multi-version memory algorithm had significantly bpttor perforrnpnce and

'Huang [Hua9O] discusses concurrent priority queues in much more detail.

5.3. SIMULATION RESULTS 117

4o
S30

E

CL

0: ,,.,.............

0 20 40 60 80

B-tree Workers

Figure 5.9: Throughput vs. B-tree Workers. Priority queue implementation.

scaling properties than the other algorithms. Replication, resource contention, and net-
work latency had a significant effect on B-tree performance, especially for the two lock
coupling algorithms. The weaker semantics of multi-version memory allows more con-
currency and less communication and synchronization, thus allowing higher throughput.

5.3.2 Large Network Latency

In this section, we describe the results of an experiment designed to compare the per-
formance of multi-version memory and coherent shared memory algorithms for systems
with high network latency. We compared our multi-version memory and our coherent
shared memory algorithms as a tool for the comparison. After building an initial tree
of 1000 keys and with a maximum fanout of 10, B-tree workers perform 10000 total
operations. We used randomly selected operations and uniformly distributed keys. The
operation mix was 45% lookups, 30% inserts, and 25% deletes. We set the simulator's
network latency to 16 simulated time steps, sixteen times that of the previous experi-
ments. Throughput was measured as a function of the number of B-tree workers. Except
for network latency, the parameters of this experiment are identical to the parameters
for the experiment whose results are presented in Figure 5.3.

Figure 5.10 presents the results of the experiment. Since network latency is much
greater than previous experiments, the throughput values are much lower than that of

118 CHAPTER 5. PERFORMANCE MEASUREMENTS

1 0

sao

.5.......................... ' 2.

* 2 25..o l
-o - -

0 20 40 60 80 100

B-tree Workers

Figure 5.10: Throughput vs. B-tree workers. Slow network.

Figure 5.3. The throughput curve for the multi-version memr algorithm is almost
linear, and does not experience the saturation characteristics oi previous experiments.

This suggests that for this experiment, the large network latency is the overwhelming
factor in limiting performance. However, the coherent shared memory algorithm exhibits

significant performance degradation at around 40 worker.. We can attribute this to the
expensive communication and synchronization required to implement coherent shared
memory, especially when an update has been performed. Multi-version memory, on the
other hand, does not incur these costs. The results of this experiment suggest that for

systems with large network latencies and for applications that can use its looser semantics,
multi-version memory is much more suitable than coherent shared memory.

5.3.3 Replication Factor

In this section, we describe the results of an experiment designed to compare the per-
formance of multi-version memory and coherent shared memory schemes as a function
of the number of replicated copies that have to be managed. As suggested in Chap-

ter 4, the synchronization and communication necessary for maintaining coherent shared
memory grow with the number of replicated copies. Multi-version memory requires less

synchronization and communication than coherent shared memory.

We compared our multi-version memory and coherent shared memory algorithms.

5.3. SIMULATION RESULTS 119

oul mvm

our CSUD - -

€) 15 0 i

E

100

"-

.: 5 0 ii.'.

0

0 0.5 1.0 1. 2.0

Replication Factor

Figure 5.11: Throughput vs. replication factor. 20 B-tree workers.

After building an initial tree of 1000 keys and with a maximum fanout of 10, B-tree

workers perform 10000 total operations. We used randomly selected operations and

uniformly distributed keys. The operation mix was 45% lookups, 30% inserts, and 25%

deletes. We set the simulator's network latency to the default value (i.e., one simulated

time step). After fixing the number of B-tree workers. we measured throughput as a

function of the replication factor.

For coherent shared memory, we expect low throughput for both very low and very

high replication factors. Low replication factors limit the amount of concurrency in the

B-tree by limiting the total number of replicated copies of nodes at each level. High

replication factors require expensive synchronization and communication to keep large

numbers of replicated copies coherent. For multi-version memories, we also expect low

throughput for very low replication factors. The effect of high replication factors on

multi-version memory is less clear. As explained in Chapter 4, multi-version memory

implementations can do away with the costs in keeping copies coherent. However, in-

creasing the number of replicated copies also slows down the rate at which newer versions

reach the replicated copies. Thus as the replication factor increases, so does the chance

that readers access old versions of B-tree nodes. This may cause more rightlinks to be

traversed, which increases latency and decreases throughput.

Figures 5.11 and 5.12 presents performance results for 20 and 100 workers, respec-

120 CHAPTER 5. PERFORMANCE MEASUREMENTS

2 0 0

1000 150E

C-

0...... ' 2

C . 1.5 2.0

Replicabon Factor

Iigure .5.12: Throughput vs. replication factor. 100 B-tree workers.

tivelv. For 20 workers, performance for multi-version memory is virtually constant as the

replication factor is varied, and performance for coherent shared memory decr'ases slowly
as the replicatioii factor increases. This is the result of the excess synchronization and
communication needed in coherent shared memory. We do not see performance degrada-
tion for low replication factors. This is because of the small number of B-tree workers inT
the experiment: the low replication factors do not affect the overall concurrency of the
experiment.

For 100 workers, low replication factors adversely affect performance for both algo-
rithms. Also, the performance of both memory schemes decreases as the replication
fa-tor increases. It is likely that the multi-version memory algorithm's performance de-
clines with higher replication factors because of an increase in the number of old versions
accessed by readers; however, we do not have detailed enough data to verify this hypoth-
esis. For the range of replication factors measured in this experiment, the multi-version

memory algorithm significantly outperforms its coherent shared memory counterpart.

From this experiment we conclude that maintaining large numbers of replicated copies
in both multi-version memory and coherent shared memory adversely affects performance.
but for different reasons. For coherent shared memory, too many replicated copies causes
synchronization and communication to grow beyond acceptable levels. For some multi-
version memory implementations, too many replicated copies may cause the copies to

5.4. SUMMARY 121

contain old versions. which affects performance. However, the magnitude of this effect

obviously depends on the application.

5.4 Summary

In this chapter, we discussed the performance of various concurrent B-tree algorithms.

The algorithins include our multi-version memory and coherent shared memory link a]-

iorithms as well as two lock coupling algorithms. We used a message-driven simulator to

model the algorithms* performances on a large scale message-passing architecture. Our

sin III lalii jil> a(C o.t I(,: t1I' effects of data and resource contenition,. rcpicatioii, and

network ia;,c,. The results show that our multi-version memory algorithm presented

iM Chapter -1 has the best performance and scaling properties. Multi-version memory

allow!-, for hig-her replication aid concurrency while decreasing synchronization arid com-
tIllliila loI.

122 CIHAPTER 5. PER FORMA NCE MEAS UREME N TS

Chapter 6

Conclusions

In this thesis. we investigated concurrent B-tree algorithms. We presented two new
algorithms, one of which uses a novel replication scheme called multi-version memory
to improve performance significantly. We showed in the previous chapter that our two
algorithms perform much better than other proposed concurrent B-tree algorithms and
that multi-version memory si iiificantly improved the scaling properties of B-trees. In
this chapter, we summarize the contributions of the thesis and discuss directions for
future work.

6.1 Contributions

The contributions of the thesis are threefold:

" It presents the multi-version memory replication abstraction.

" It proposes two new concurrent B-tree algorithms, one using coherent shared mem-
ory, and the other modified to use multi-version memory.

" It compares the performance of various concurrent B-tree algorithms, including the
algorithms proposed above.

The multi-version memory abstraction offers memory replication with higher con-
currency and scaling properties than coherent shared memory. The cost of this im-
provement is a looser semantics that is less generally useful. However, as described in
Chapter 4, multi-version memory is useful for a variety of dictionary algorithms. We
can view multi-version memory as a specific example of a more general idea, software
cache management. In such a scheme, the user can specify with an application the

123

124 CHAPTER 6. CONCLUSIONS

semantics of hardware caches. While others have proposed managing caches in soft-

ware [BMW85, SS88, CSB86, BCZ90], they do not change the semantics of the replicated

memory.

Allowing the user to specify in software the semantics of hardware caches fits natu-

rally into the object-oriented programming style based on inventing application-specific

abstract data types, such as that advocated by Liskov and Guttag [LG86]. Complex cache

management algorithms can be encapsulated in the implementations of the abstract data

types, and can be changed depending on the access patterns of the application.

The two concurrent B-tree algorithms we propose are both based on the Lehman-Yao

algorithm as modified by Sagiv. and use ideas suggested by Lanin and Shasha. They

perform better than any other proposed B-tree algorithm. The multi-version memory

algorithm, in particular. exhibits much better performance and scaling properties than

coherent shared memory algorithms.

The performance measurements of Chapter 5 suggest that replication, resource con-

tention and network latency play an important role in determining performance for con-

current B-tree algorithms. In some cases, issues commonly ignored by existing work on

concurrent B-trees dramatically affect measured performance. F example, Lanin and

Shasha [LS86] and Lanin, et al. [LSS87] found the optimistic Mund-Raz top-down lock

coupling algorithm (MR85 to perform significantly better than the optimistic Bayer-

Schkolnick bottom-up lock coupling algorithm [BS77]. Taking network latency in the

underlying architecture into consideration, the performance differences between Mond-

Raz and Bayer-Schkolnick algorithms are sometimes not very significant.

6.2 Future Work

We categorize directions for future work into two general areas: the multi-version memory

abstraction and concurrent B-tree analysis.

6.2.1 Multi-Version Memory

The multi-version memory abstraction is clearly a useful replication tool for concurrent

B-trees and any dictionary data structure that satisfies the set of constraints presented

in Chapter 4. Future work should include investigating other applications that can use

multi-version memory to improve performance. For example, some iterative relaxation

algorithms [Bau78] do not require processes to obtain the most recent version of cer-

6.2. FUTURE WORK 125

tain values. Any version will guarantee correctness and termination. Another group of

applications that may benefit from multi-version memory is parallel algorithms that use
speculative concurrency [Hal88]. While up-to-date information may help such algorithms

allocate resources efficiently, it is not essential for correctness. If versions kept by repli-
cated copies remain relatively recent, multi-version memory may improve performance

due to its ability to reduce synchronization and communication between independent

processes.
We can also build a multi-version memory spin monitor, an idea by William Weihl

which provides the same synchronization tools as conventional monitors [Hoa74, Bri75,

Dij711. Instead of descheduling processes that wait on a condition variable, spin monitors

allow processes to loop around the condition using readpins. Spin monitors might be
especially useful for applications where the number of waiting processes is large: they

avoid the rescheduling overhead in conventional monitors.

The experiments in the previous chapter used an implementation of multi-version

memory that propagates new versions directly from the base copy to the replicated copies.

Chapter 4 outlined a variety of implementation alternatives, such as invalidation schemes
and dynamic adjustment of the number of replicated copies. Future work should include

a study comparing the performance of different multi-version memory implementations.

The more general idea of software cache management (of which multi-version memory

is a specific example) is another important area to focus future work. As parallel and dis-

tributed systems become larger, it may become necessary for the user to specify complex

cache management algorithms. Implementing software cache management in existing

parallel architectures will be difficult, especially for abstractions such as multi-version

memory, which require processes to pin cache entries. Existing or proposed architectures
would have to be modified t- support general software cache management. Investigat-

ing the usefulness of software cache management for large parallel applications will help

decide whether modifying hardware design is either worthwhile or feasible.

6.2.2 Concurrent B-Trees

Although the simulator used for the performance measurements in Chapter 5 takes into
account many issues such as replication, resource contention, and network latency, it does

not make precise measurements. For example, it treats network latency in a very naive

fashion. (An average cost is assigned to every CA message without any regard to locality

or network contention.) Resource constraints prevented experiments for very large scale

simulations (such as thousands of B-tree workers). Implementing and measuring the

126 CHAPTER 6. CONCLUSIONS

concurrent B-tree algorithms in a more accurate and more efficient simulator should
provide better insight into the behavior of these algorithms.

For example. a parallel simulator designed by Dellarocas and Brewer [DB90] mod-
els the behavior of parallel programs for a diverse variety of architectures. It measures
network latency not by a fixed average cost, but by comprehensive models for different
network topologies. Because the simulator is not a "cycle-by-cycle" simulator, but one
that allows individual threads to run for some variable number of cycles, resource con-
straints are much less stringent than the simulator used in this thesis. Furthermore, the
user can specify efficiently "without cost" the types of performance characteristics to be
measured. Such a simulator would be very useful in generating more detailed information
about the algorithms. (Unfortunately, Dellarocas and Brewer's simulator was completed

too late to be used in this thesis.)

The results of such simulations should help us better understand the performance
of concurrent B-trees when issues such as resource contention, replication and network
latency are factored in. This would allow us to derive an accurate, comprehensive an-
alytical model for predicting performance. Johnson and Shasha [JS90] have developed

an analytical model for concurrent B-tree algorithms that takes into account data and
resource contention. A model that includes replication and network latency would be

even more helpful.
A second area of future work for concurrent B-tree algorithms concerns parent pointers

for B-link tree nodes, an idea proposed in Section 3.7. These pointers can reduce the

overhead required for performing update operations.

Bibliography

[AB86] J. Archibald and J.-L. Baer. Cache Coherence Protocols: Evaluation Using a
Multiprocessor Simulation Model. ACM Transactions on Computer Systems,
4(4):273-298. November 1986.

[ABM891 Y. Afek. G. Brown, and M. Merritt. A Lazy Cache Algorithm. In Proceedings
of the 1989 ACM Symposium on Parallel Algorithms and Architectures, pages
209-222. July 1989.

lAnd89] Thomas E. Anderson. The Performance Implications of Spin-Waiting Al-
ternatives for Shared-Memory Multiprocessors. Technical Report 89-04-03,
Department of Computer Science, University of Washington, April 1989.

fAVL62] G. M. Adel'son-Vel'skil and E. M. Landis. An Algorithm for the Organization
of Information. Soviet Mathematics Doklady, 3:1259-1263, 1962.

[Bau78] G6rard M. Baudet. Asynchronous Iterative Methods for Multiprocessors.
Journal of the Association for Computing Machinery, 25(2):226-244, April
1978.

[Bay72] R. Bayer. Symmetric Binary B-trees: Data Structure and Maintcnance Algo-
rithms. Acta Informatica, 1:290-306, 1972.

[BCZ90] J. Bennett, J. Carter, and W. Zwaenepoel. Munin: Distributed Shared Mem-
ory Based on Type-Specific Memory Coherence. Technical Report Rice COMP
TR89-98, Rice University, 1990.

[BM72] R. Bayer and E. M. McCreight. Organization and Maintenance of Large
Ordered Indexes. Acta Informatica, 1(3):173-189, 1972.

[BMW85] W. C. Brantley, K. P. McAuliffe, and J. Weiss. RP3 Processor-Memory Ele-
ment. In Proceedings of the International Conference on Parallel Processing,
pages 782-789, 1985.

[Bri75] Per Brinch Hansen. The Programming Language Concurrent Pascal. IEEE
Transactions on Software Engineering, SE-1(2), June 1975.

127

128 BIBLIOGRAPHY

[BS77] R. Bayer and M. Schkolnick. Concurrency of Operations on B-trees. Acta
Informatica, 9:1-22, 1977.

[Bur88] Michael Burrows. Efficient Data Sharing. Technical Report 153, University
of Cambridge Computer Laboratory, December 1988.

[CD90] A. Chien and W. Dally. Concurrent Aggregates (CA). In Proceedings of the
Second Symposium on Principles and Practice of Parallel Programming, pages
187-196. ACM. March 1990.

[Che86] D. Cheriton. Problem-oriented Shared Memory: A Decentralized Approach to
Distributed System Design. In Proceedings of the 6th International Conference
on Distributed Computing Systems, pages 180-197, May 1986.

[Chi90] Ak. Chien. Concurrent Aggregates: An Object-Oriented Languag(for Finf-
Grained Message-Passing Machines. PhD thesis, MIT, 1990.

[CLR90 Thomas H. Cormen. Charles E. Leiserson., and Ronald L. Rivest. Introduction
to Algorithms. The MIT Press and McGraw-Hill, 1990.

[Com79] D. Comer. The Ubiquitous B-Tree. ACM Computing Surveys, 11(2):121-128,
June 1979.

[CSB86] D. Cheriton. G. Slavenburg. and P. Boyle. Software-Controlled Caches in the
VMP Multiprocessor. In Proceedings of the 13th International Symposium on
Computer Architecture, pages 366-374, June 1986.

[DB90] Chris N. Dellarocas and Eric A. Brewer. The Parallel Architecture Simulator.
MIT PSG Design Note draft. 1990.

[DC88] AV. J. Dally and Andrew Chien. Object Oriented Concurrent Programming in
CST. In Proceedings of the Third Conference on Hypercube Computers, pages
434-9. Pasedena, California, 1988. SIAM.

[DCF+89] W. J. Dally, Andrew Chien, Stuart Fiske, Waldemar Horwat, John Keen,
Michael Larivee, Rich Lethin, Peter Nuth, Scott Wills, Paul Carrick, and Greg
Fyler. The J-Machine: A Fine-Grain Concurrent Computer. In Information
Processing 89, Proceedings of the IFIP Congress, pages 1147-1153. IEEE,
August 1989.

[Dij7l] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Infor-
matica, 1(2):115-138, 1971.

[DS85] W. J. Dally and C. L. Seitz. The balanced cube: A concurrent data structure.
Technical Report 5174:TR:85, Caltech, June 1985.

BIBLIOGRAPHY 129

[E1180] C. S. Ellis. Concurrent Search and Inserts in 2-3 Trees. Acta Informatica,
14(1):63-86, 1980.

[Ha188] R. Halstead. Jr. Parallel Computing Using Multilisp. In J. Kowalik, editor,
Parallel Computation and Computers for Artificial Intelligence, pages 21-49.
Kleuwer Academic Pub., 1988.

[Her89] M. Herlihy. Concurrent B-trees without Locking. Draft, October 1989.

[Her90] NI. Herlihy. A Methodology for Implementing Highly Concurrent Data Struc-
tures. In Proceedings of the Second ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 197-206, March 1990.

[Hoa74] C. A. R. Hoare. Monitors: An Operating System Structuring Concept.
CACM. 17(10):549-557, October 1974.

[Hua90] Qin Huang. An Evaluation of Concurrent Priority Queue Algorithms. Master's
thesis, MIT, August 1990.

[HW90] M. Herlihy and J. Wing. Linearizability: A COrrectness Condition for Con-
current Objects. A CM Transactions on Programming Languages and Systems,
12(3):463-492, 1990.

[JFS85] M. Jipping, R. Ford, and R. Schultz. On the Performance of Concurrent Tree

Algorithms. Technical Report 85-07, University of Iowa, 1985.

[JFSW90] NI. Jipping, R. Ford. R. Schultz. and B. Wenhardt. On the performance of

concurrent tree algorithms. Submitted for publication, 1990.

[JS89] T. Johnson and D. Shasha. Utilization of of B-trees with inserts, deletes, and
modifies. In ACM SIGACT/SIGMOD/SIGART Symposium on Principles of

Database Systems, pages 235-246. ACM, 1989.

[JS90] T. Johnson and D. Shasha. A Framework for the Performance Analysis of

Concurrent B-tree Algorithms. In Proceedings of the 9th A CM Symposium on
Principles of Database Systems, April 1990.

[KL80] H. T. Kung and P. L. Lehman. Concurrent Manipulation of Binary Search

Trees. ACM Transactions on Computer Systems, 5(3):354-382, 1980.

[Knu73] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 1973.

[Kor83I H. F. Korth. Locking Primitives in a Database System. Journal of the ACM,
30(1):55-79, January 1983.

130 BIBLIOGRAPHY

[KRR88] Vipin Kumar, K. Ramesh, and V. Nageshwara Rao. Parallel Best-First Search
of State-Space Graphs: A Summary of Results. In National Conference of
Artificial Intelligence, pages 122-127, August 1988.

[KW82] Y. S. Kwong and D. Wood. A New Method for Concurrency in B-trees. IEEE
Transactions on Software Engineering, SE-8(3):211-222, May 1982.

[Lam79] L. Lamport. How to Make a Multiprocessor that Correctly Executes Multi-
process Programs. IEEE Transactions on Computers, C-28:690-691, 1979.

[LG86] B. Liskov and J. Guttag. Abstraction and Specification in Program Develop-
ment. MIT Press. 1986.

[LS86] V. Lanin and D. Shasha. A Symmetric Concurrent B-Tree Algorithm. In 1986
Proceedings Fall Joint Computer Conference, pages 380-386, November 1986.

[LSS87I V. Lanin, D. Shasha, and J. Schmidt. An Analytical Model for the Perfor-
mance of Concurrent B-tree Algorithms. NYU Ultracomputer Note 311, NYU
Ultracomputer Lab, 1987.

[LY81] P. L. Lehman and S. B. Yao. Efficient Locking for Co- Irrent Operations on
B-Trees. ACM Transactions on Database Systems, 6 :650-670, December
1981.

[MR85] Y. Mond and Y. Raz. Concurrency Control in B+ Trees Using Preparatory
Operations. In Proceedings of the I1th International Conference on Very Large
Data Bases, pages 331-334, August 1985.

[Nil80] Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Press, 1980.

[Pea84] Judea Pearl. Heuristics - Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley, 1984.

[PN85] G. F. Pfister and V. A. Norton. "Hot Spot" Contention and Combining in
Multistage Interconnection Networks. IEEE Transactions on Computers, C-
34(10):943-948, October 1985.

(Sag86] Y. Sagiv. Concurrent Operations on B-Trees with Overtaking. Journal of
Computer and System Sciences, 33(2):275-296, October 1986.

[S, 185] B. Salzberg. Restructuring the Lehman-Yao Tree. Technical Report BS-850-
21, College of Computer Science, Northeastern University, January 1985.

[SG88] D. Shasha and N. Goodman. Concurrent Search Structure Algorithms. ACM
Transactions on Database Systems, 13(1):53-90, March 1988.

BIBLIOGRAPHY 131

[SS88] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel Programs
that Share Memory. A CM Transactions on Programming Languages and Sys-
tems, 10(2):282-312, April 1988.

[ST83] Daniel D. Sleator and Robert E. Tarjan. A Data Structure for Dynamic Trees.
Journal of Computer and System Sciences, 26(3)i362-391, 1983.

[ST87] William E. Snaman, Jr. and David W. Thiel. The VAX/VMS Distributed
Lock Manager. Digital Technical Journal, (5):29-44, September 1987.

[W¥ed74] H. Wedekind. On the selection of access paths in a database system. In J. W.
Klimbie and K. L. Koffeman, editors, Database Munagement, pages 385-397.
North Holland Publishing Company, 1974.

[Win84] Patrick H. Winston. Artificial Intelligence. Addison-Wesley, 2nd edition, 1984.

[WW90] William E. Weihl and Paul Wang, Multi-Version Memory: Software Cache
Management for Concurrent B-Trees (extended abstract). In Proceedings of
the 2nd IEEE Symposium on Parallel and Distributed Processing, pages 650-
655, December 1990.

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555

